These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 26221973)
21. Metallomics and NMR-based metabolomics of Chlorella sp. reveal the synergistic role of copper and cadmium in multi-metal toxicity and oxidative stress. Zhang W; Tan NG; Fu B; Li SF Metallomics; 2015 Mar; 7(3):426-38. PubMed ID: 25569820 [TBL] [Abstract][Full Text] [Related]
22. Integrating FTIR 2D correlation analyses, regular and omics analyses studies on the interaction and algal toxicity mechanisms between graphene oxide and cadmium. Wu K; Li Y; Zhou Q; Hu X; Ouyang S J Hazard Mater; 2023 Feb; 443(Pt B):130298. PubMed ID: 36356516 [TBL] [Abstract][Full Text] [Related]
23. Comparative in vitro study of single and four layer graphene oxide nanoflakes - Cytotoxicity and cellular uptake. Peruzynska M; Cendrowski K; Barylak M; Tkacz M; Piotrowska K; Kurzawski M; Mijowska E; Drozdzik M Toxicol In Vitro; 2017 Jun; 41():205-213. PubMed ID: 28323107 [TBL] [Abstract][Full Text] [Related]
24. Factors controlling the size of graphene oxide sheets produced via the graphite oxide route. Pan S; Aksay IA ACS Nano; 2011 May; 5(5):4073-83. PubMed ID: 21469697 [TBL] [Abstract][Full Text] [Related]
25. Effects of graphene oxide on algal cellular stress response: Evaluating metabolic characters of carbon fixation and nutrient removal. Ji X; Li X; Wu S; Hou M; Zhao Y Chemosphere; 2020 Aug; 252():126566. PubMed ID: 32222521 [TBL] [Abstract][Full Text] [Related]
26. Systematic Assessment of the Toxicity and Potential Mechanism of Graphene Derivatives In Vitro and In Vivo. Li J; Zhang X; Jiang J; Wang Y; Jiang H; Zhang J; Nie X; Liu B Toxicol Sci; 2019 Jan; 167(1):269-281. PubMed ID: 30239936 [TBL] [Abstract][Full Text] [Related]
27. Synthesis of reduced graphene oxide-anatase TiO2 nanocomposite and its improved photo-induced charge transfer properties. Wang P; Zhai Y; Wang D; Dong S Nanoscale; 2011 Apr; 3(4):1640-5. PubMed ID: 21286599 [TBL] [Abstract][Full Text] [Related]
28. Supramolecular Assembly of Biobased Graphene Oxide Quantum Dots Controls the Morphology of and Induces Mineralization on Poly(ε-caprolactone) Films. Hassanzadeh S; Adolfsson KH; Wu D; Hakkarainen M Biomacromolecules; 2016 Jan; 17(1):256-61. PubMed ID: 26650535 [TBL] [Abstract][Full Text] [Related]
29. Suitable chemical methods for preparation of graphene oxide, graphene and surface functionalized graphene nanosheets. Sheshmani S; Fashapoyeh MA Acta Chim Slov; 2013; 60(4):813-25. PubMed ID: 24362985 [TBL] [Abstract][Full Text] [Related]
30. The permeability and transport mechanism of graphene quantum dots (GQDs) across the biological barrier. Wang XY; Lei R; Huang HD; Wang N; Yuan L; Xiao RY; Bai LD; Li X; Li LM; Yang XD Nanoscale; 2015 Feb; 7(5):2034-41. PubMed ID: 25553649 [TBL] [Abstract][Full Text] [Related]
31. Graphene quantum dots sensor for the determination of graphene oxide in environmental water samples. Benítez-Martínez S; López-Lorente ÁI; Valcárcel M Anal Chem; 2014 Dec; 86(24):12279-84. PubMed ID: 25407254 [TBL] [Abstract][Full Text] [Related]
32. The role of surface chemistry in the cytotoxicity profile of graphene. Majeed W; Bourdo S; Petibone DM; Saini V; Vang KB; Nima ZA; Alghazali KM; Darrigues E; Ghosh A; Watanabe F; Casciano D; Ali SF; Biris AS J Appl Toxicol; 2017 Apr; 37(4):462-470. PubMed ID: 27593524 [TBL] [Abstract][Full Text] [Related]
33. The nanomaterial-induced bystander effects reprogrammed macrophage immune function and metabolic profile. Yuan P; Hu X; Zhou Q Nanotoxicology; 2020 Oct; 14(8):1137-1155. PubMed ID: 32916084 [TBL] [Abstract][Full Text] [Related]
34. Interaction between Eu(III) and graphene oxide nanosheets investigated by batch and extended X-ray absorption fine structure spectroscopy and by modeling techniques. Sun Y; Wang Q; Chen C; Tan X; Wang X Environ Sci Technol; 2012 Jun; 46(11):6020-7. PubMed ID: 22550973 [TBL] [Abstract][Full Text] [Related]
36. The effect of exogenous nitric oxide on alleviating herbicide damage in Chlorella vulgaris. Qian H; Chen W; Li J; Wang J; Zhou Z; Liu W; Fu Z Aquat Toxicol; 2009 May; 92(4):250-7. PubMed ID: 19297032 [TBL] [Abstract][Full Text] [Related]
37. Graphene oxide significantly inhibits cell growth at sublethal concentrations by causing extracellular iron deficiency. Yu Q; Zhang B; Li J; Du T; Yi X; Li M; Chen W; Alvarez PJJ Nanotoxicology; 2017; 11(9-10):1102-1114. PubMed ID: 29119849 [TBL] [Abstract][Full Text] [Related]
38. Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Lv JM; Cheng LH; Xu XH; Zhang L; Chen HL Bioresour Technol; 2010 Sep; 101(17):6797-804. PubMed ID: 20456951 [TBL] [Abstract][Full Text] [Related]
39. Graphene Oxide Nanosheets Reshape Synaptic Function in Cultured Brain Networks. Rauti R; Lozano N; León V; Scaini D; Musto M; Rago I; Ulloa Severino FP; Fabbro A; Casalis L; Vázquez E; Kostarelos K; Prato M; Ballerini L ACS Nano; 2016 Apr; 10(4):4459-71. PubMed ID: 27030936 [TBL] [Abstract][Full Text] [Related]
40. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. Liu S; Zeng TH; Hofmann M; Burcombe E; Wei J; Jiang R; Kong J; Chen Y ACS Nano; 2011 Sep; 5(9):6971-80. PubMed ID: 21851105 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]