These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 26222023)

  • 1. HipBA-promoter structures reveal the basis of heritable multidrug tolerance.
    Schumacher MA; Balani P; Min J; Chinnam NB; Hansen S; Vulić M; Lewis K; Brennan RG
    Nature; 2015 Aug; 524(7563):59-64. PubMed ID: 26222023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular mechanisms of HipA-mediated multidrug tolerance and its neutralization by HipB.
    Schumacher MA; Piro KM; Xu W; Hansen S; Lewis K; Brennan RG
    Science; 2009 Jan; 323(5912):396-401. PubMed ID: 19150849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinase activity of overexpressed HipA is required for growth arrest and multidrug tolerance in Escherichia coli.
    Correia FF; D'Onofrio A; Rejtar T; Li L; Karger BL; Makarova K; Koonin EV; Lewis K
    J Bacteriol; 2006 Dec; 188(24):8360-7. PubMed ID: 17041039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ectopic overexpression of wild-type and mutant hipA genes in Escherichia coli: effects on macromolecular synthesis and persister formation.
    Korch SB; Hill TM
    J Bacteriol; 2006 Jun; 188(11):3826-36. PubMed ID: 16707675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infection: HipA and multidrug tolerance in urinary tract infection.
    Kelsey R
    Nat Rev Urol; 2015 Sep; 12(9):474. PubMed ID: 26282213
    [No Abstract]   [Full Text] [Related]  

  • 6. Serine-Threonine Kinases Encoded by Split
    Vang Nielsen S; Turnbull KJ; Roghanian M; Bærentsen R; Semanjski M; Brodersen DE; Macek B; Gerdes K
    mBio; 2019 Jun; 10(3):. PubMed ID: 31213559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli.
    Keren I; Shah D; Spoering A; Kaldalu N; Lewis K
    J Bacteriol; 2004 Dec; 186(24):8172-80. PubMed ID: 15576765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phylogeny Reveals Novel HipA-Homologous Kinase Families and Toxin-Antitoxin Gene Organizations.
    Gerdes K; Bærentsen R; Brodersen DE
    mBio; 2021 Jun; 12(3):e0105821. PubMed ID: 34061596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The kinases HipA and HipA7 phosphorylate different substrate pools in
    Semanjski M; Germain E; Bratl K; Kiessling A; Gerdes K; Macek B
    Sci Signal; 2018 Sep; 11(547):. PubMed ID: 30206139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autoregulation of hip, an operon that affects lethality due to inhibition of peptidoglycan or DNA synthesis.
    Black DS; Irwin B; Moyed HS
    J Bacteriol; 1994 Jul; 176(13):4081-91. PubMed ID: 8021189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A molecular model for persister in E. coli.
    Lou C; Li Z; Ouyang Q
    J Theor Biol; 2008 Nov; 255(2):205-9. PubMed ID: 18721814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New kinase regulation mechanism found in HipBA: a bacterial persistence switch.
    Evdokimov A; Voznesensky I; Fennell K; Anderson M; Smith JF; Fisher DA
    Acta Crystallogr D Biol Crystallogr; 2009 Aug; 65(Pt 8):875-9. PubMed ID: 19622872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the hipA7 allele of Escherichia coli and evidence that high persistence is governed by (p)ppGpp synthesis.
    Korch SB; Henderson TA; Hill TM
    Mol Microbiol; 2003 Nov; 50(4):1199-213. PubMed ID: 14622409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptional repressor HipB regulates the multiple promoters in Escherichia coli.
    Lin CY; Awano N; Masuda H; Park JH; Inouye M
    J Mol Microbiol Biotechnol; 2013; 23(6):440-7. PubMed ID: 24089053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The hipBA
    Yadav M; Rathore JS
    Appl Microbiol Biotechnol; 2020 Apr; 104(7):3081-3095. PubMed ID: 32043192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of oxidative stress in persister tolerance.
    Wu Y; Vulić M; Keren I; Lewis K
    Antimicrob Agents Chemother; 2012 Sep; 56(9):4922-6. PubMed ID: 22777047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. hipBA toxin-antitoxin systems mediate persistence in Caulobacter crescentus.
    Huang CY; Gonzalez-Lopez C; Henry C; Mijakovic I; Ryan KR
    Sci Rep; 2020 Feb; 10(1):2865. PubMed ID: 32071324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular mechanism of bacterial persistence by HipA.
    Germain E; Castro-Roa D; Zenkin N; Gerdes K
    Mol Cell; 2013 Oct; 52(2):248-54. PubMed ID: 24095282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth feedback as a basis for persister bistability.
    Feng J; Kessler DA; Ben-Jacob E; Levine H
    Proc Natl Acad Sci U S A; 2014 Jan; 111(1):544-9. PubMed ID: 24344277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HipA-mediated antibiotic persistence via phosphorylation of the glutamyl-tRNA-synthetase.
    Kaspy I; Rotem E; Weiss N; Ronin I; Balaban NQ; Glaser G
    Nat Commun; 2013; 4():3001. PubMed ID: 24343429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.