BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 26222026)

  • 1. RNA degradation paths in a 12-subunit nuclear exosome complex.
    Makino DL; Schuch B; Stegmann E; Baumgärtner M; Basquin C; Conti E
    Nature; 2015 Aug; 524(7563):54-8. PubMed ID: 26222026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of an RNA-bound 11-subunit eukaryotic exosome complex.
    Makino DL; Baumgärtner M; Conti E
    Nature; 2013 Mar; 495(7439):70-5. PubMed ID: 23376952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The exosome-binding factors Rrp6 and Rrp47 form a composite surface for recruiting the Mtr4 helicase.
    Schuch B; Feigenbutz M; Makino DL; Falk S; Basquin C; Mitchell P; Conti E
    EMBO J; 2014 Dec; 33(23):2829-46. PubMed ID: 25319414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rrp47 functions in RNA surveillance and stable RNA processing when divorced from the exoribonuclease and exosome-binding domains of Rrp6.
    Garland W; Feigenbutz M; Turner M; Mitchell P
    RNA; 2013 Dec; 19(12):1659-68. PubMed ID: 24106327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of an Rrp6-RNA exosome complex bound to poly(A) RNA.
    Wasmuth EV; Januszyk K; Lima CD
    Nature; 2014 Jul; 511(7510):435-9. PubMed ID: 25043052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and reconstitution of yeast Mpp6-nuclear exosome complexes reveals that Mpp6 stimulates RNA decay and recruits the Mtr4 helicase.
    Wasmuth EV; Zinder JC; Zattas D; Das M; Lima CD
    Elife; 2017 Jul; 6():. PubMed ID: 28742025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nuclear RNA Exosome at 3.1 Å Reveals Substrate Specificities, RNA Paths, and Allosteric Inhibition of Rrp44/Dis3.
    Zinder JC; Wasmuth EV; Lima CD
    Mol Cell; 2016 Nov; 64(4):734-745. PubMed ID: 27818140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assembly of the yeast exoribonuclease Rrp6 with its associated cofactor Rrp47 occurs in the nucleus and is critical for the controlled expression of Rrp47.
    Feigenbutz M; Jones R; Besong TM; Harding SE; Mitchell P
    J Biol Chem; 2013 May; 288(22):15959-70. PubMed ID: 23580640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Rrp6 C-terminal domain binds RNA and activates the nuclear RNA exosome.
    Wasmuth EV; Lima CD
    Nucleic Acids Res; 2017 Jan; 45(2):846-860. PubMed ID: 27899565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The exosome cofactor Rrp47 is critical for the stability and normal expression of its associated exoribonuclease Rrp6 in Saccharomyces cerevisiae.
    Feigenbutz M; Garland W; Turner M; Mitchell P
    PLoS One; 2013; 8(11):e80752. PubMed ID: 24224060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exo- and endoribonucleolytic activities of yeast cytoplasmic and nuclear RNA exosomes are dependent on the noncatalytic core and central channel.
    Wasmuth EV; Lima CD
    Mol Cell; 2012 Oct; 48(1):133-44. PubMed ID: 22902556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activities of human RRP6 and structure of the human RRP6 catalytic domain.
    Januszyk K; Liu Q; Lima CD
    RNA; 2011 Aug; 17(8):1566-77. PubMed ID: 21705430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural analysis of the yeast exosome Rrp6p-Rrp47p complex by small-angle X-ray scattering.
    Dedic E; Seweryn P; Jonstrup AT; Flygaard RK; Fedosova NU; Hoffmann SV; Boesen T; Brodersen DE
    Biochem Biophys Res Commun; 2014 Jul; 450(1):634-40. PubMed ID: 24937447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CryoEM structure of yeast cytoplasmic exosome complex.
    Liu JJ; Niu CY; Wu Y; Tan D; Wang Y; Ye MD; Liu Y; Zhao W; Zhou K; Liu QS; Dai J; Yang X; Dong MQ; Huang N; Wang HW
    Cell Res; 2016 Jul; 26(7):822-37. PubMed ID: 27174052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of karyopherins involved in the nuclear import of RNA exosome subunit Rrp6 in
    Gonzales-Zubiate FA; Okuda EK; Da Cunha JPC; Oliveira CC
    J Biol Chem; 2017 Jul; 292(29):12267-12284. PubMed ID: 28539363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The eukaryotic RNA exosome.
    Januszyk K; Lima CD
    Curr Opin Struct Biol; 2014 Feb; 24():132-40. PubMed ID: 24525139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstitution of S. cerevisiae RNA Exosome Complexes Using Recombinantly Expressed Proteins.
    Zinder JC; Lima CD
    Methods Mol Biol; 2020; 2062():427-448. PubMed ID: 31768989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The yeast ski complex: crystal structure and RNA channeling to the exosome complex.
    Halbach F; Reichelt P; Rode M; Conti E
    Cell; 2013 Aug; 154(4):814-26. PubMed ID: 23953113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct and evolutionary conserved structural features of the human nuclear exosome complex.
    Gerlach P; Schuller JM; Bonneau F; Basquin J; Reichelt P; Falk S; Conti E
    Elife; 2018 Jul; 7():. PubMed ID: 30047866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulating the RNA processing and decay by the exosome: altering Rrp44/Dis3 activity and end-product.
    Reis FP; Barbas A; Klauer-King AA; Tsanova B; Schaeffer D; López-Viñas E; Gómez-Puertas P; van Hoof A; Arraiano CM
    PLoS One; 2013; 8(11):e76504. PubMed ID: 24265673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.