These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 26222196)
1. Predicting Molecular Targets for Small-Molecule Drugs with a Ligand-Based Interaction Fingerprint Approach. Cao R; Wang Y ChemMedChem; 2016 Jun; 11(12):1352-61. PubMed ID: 26222196 [TBL] [Abstract][Full Text] [Related]
2. Discovery of a new chemical series of BRD4(1) inhibitors using protein-ligand docking and structure-guided design. Duffy BC; Liu S; Martin GS; Wang R; Hsia MM; Zhao H; Guo C; Ellis M; Quinn JF; Kharenko OA; Norek K; Gesner EM; Young PR; McLure KG; Wagner GS; Lakshminarasimhan D; White A; Suto RK; Hansen HC; Kitchen DB Bioorg Med Chem Lett; 2015 Jul; 25(14):2818-23. PubMed ID: 26022843 [TBL] [Abstract][Full Text] [Related]
3. Large-Scale Computational Screening Identifies First in Class Multitarget Inhibitor of EGFR Kinase and BRD4. Allen BK; Mehta S; Ember SW; Schonbrunn E; Ayad N; Schürer SC Sci Rep; 2015 Nov; 5():16924. PubMed ID: 26596901 [TBL] [Abstract][Full Text] [Related]
4. Cell-based protein stabilization assays for the detection of interactions between small-molecule inhibitors and BRD4. Schulze J; Moosmayer D; Weiske J; Fernández-Montalván A; Herbst C; Jung M; Haendler B; Bader B J Biomol Screen; 2015 Feb; 20(2):180-9. PubMed ID: 25266565 [TBL] [Abstract][Full Text] [Related]
8. Fragment-based in silico screening of bromodomain ligands. Spiliotopoulos D; Caflisch A Drug Discov Today Technol; 2016 Mar; 19():81-90. PubMed ID: 27769362 [TBL] [Abstract][Full Text] [Related]
9. Discovery of BRD4 bromodomain inhibitors by fragment-based high-throughput docking. Zhao H; Gartenmann L; Dong J; Spiliotopoulos D; Caflisch A Bioorg Med Chem Lett; 2014 Jun; 24(11):2493-6. PubMed ID: 24767840 [TBL] [Abstract][Full Text] [Related]
10. Development and validation of a novel protein-ligand fingerprint to mine chemogenomic space: application to G protein-coupled receptors and their ligands. Weill N; Rognan D J Chem Inf Model; 2009 Apr; 49(4):1049-62. PubMed ID: 19301874 [TBL] [Abstract][Full Text] [Related]
11. Protein flexibility in ligand docking and virtual screening to protein kinases. Cavasotto CN; Abagyan RA J Mol Biol; 2004 Mar; 337(1):209-25. PubMed ID: 15001363 [TBL] [Abstract][Full Text] [Related]
12. Panel docking of small-molecule libraries - Prospects to improve efficiency of lead compound discovery. Sarnpitak P; Mujumdar P; Taylor P; Cross M; Coster MJ; Gorse AD; Krasavin M; Hofmann A Biotechnol Adv; 2015 Nov; 33(6 Pt 1):941-7. PubMed ID: 26025037 [TBL] [Abstract][Full Text] [Related]
13. Structural interaction fingerprint (SIFt): a novel method for analyzing three-dimensional protein-ligand binding interactions. Deng Z; Chuaqui C; Singh J J Med Chem; 2004 Jan; 47(2):337-44. PubMed ID: 14711306 [TBL] [Abstract][Full Text] [Related]
14. GES polypharmacology fingerprints: a novel approach for drug repositioning. Pérez-Nueno VI; Karaboga AS; Souchet M; Ritchie DW J Chem Inf Model; 2014 Mar; 54(3):720-34. PubMed ID: 24494653 [TBL] [Abstract][Full Text] [Related]
15. Discovery and characterization of non-ATP site inhibitors of the mitogen activated protein (MAP) kinases. Comess KM; Sun C; Abad-Zapatero C; Goedken ER; Gum RJ; Borhani DW; Argiriadi M; Groebe DR; Jia Y; Clampit JE; Haasch DL; Smith HT; Wang S; Song D; Coen ML; Cloutier TE; Tang H; Cheng X; Quinn C; Liu B; Xin Z; Liu G; Fry EH; Stoll V; Ng TI; Banach D; Marcotte D; Burns DJ; Calderwood DJ; Hajduk PJ ACS Chem Biol; 2011 Mar; 6(3):234-44. PubMed ID: 21090814 [TBL] [Abstract][Full Text] [Related]
16. Ligand prediction from protein sequence and small molecule information using support vector machines and fingerprint descriptors. Geppert H; Humrich J; Stumpfe D; Gärtner T; Bajorath J J Chem Inf Model; 2009 Apr; 49(4):767-79. PubMed ID: 19309114 [TBL] [Abstract][Full Text] [Related]
17. Computation-based virtual screening for designing novel antimalarial drugs by targeting falcipain-III: a structure-based drug designing approach. Kesharwani RK; Singh DV; Misra K J Vector Borne Dis; 2013; 50(2):93-102. PubMed ID: 23995310 [TBL] [Abstract][Full Text] [Related]
18. Utilizing random Forest QSAR models with optimized parameters for target identification and its application to target-fishing server. Lee K; Lee M; Kim D BMC Bioinformatics; 2017 Dec; 18(Suppl 16):567. PubMed ID: 29297315 [TBL] [Abstract][Full Text] [Related]
19. Can We Rely on Computational Predictions To Correctly Identify Ligand Binding Sites on Novel Protein Drug Targets? Assessment of Binding Site Prediction Methods and a Protocol for Validation of Predicted Binding Sites. Broomhead NK; Soliman ME Cell Biochem Biophys; 2017 Mar; 75(1):15-23. PubMed ID: 27796788 [TBL] [Abstract][Full Text] [Related]
20. Novel inhibitor discovery through virtual screening against multiple protein conformations generated via ligand-directed modeling: a maternal embryonic leucine zipper kinase example. Mahasenan KV; Li C J Chem Inf Model; 2012 May; 52(5):1345-55. PubMed ID: 22540736 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]