These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. RNase H1-Dependent Antisense Oligonucleotides Are Robustly Active in Directing RNA Cleavage in Both the Cytoplasm and the Nucleus. Liang XH; Sun H; Nichols JG; Crooke ST Mol Ther; 2017 Sep; 25(9):2075-2092. PubMed ID: 28663102 [TBL] [Abstract][Full Text] [Related]
8. Understanding the effect of controlling phosphorothioate chirality in the DNA gap on the potency and safety of gapmer antisense oligonucleotides. Østergaard ME; De Hoyos CL; Wan WB; Shen W; Low A; Berdeja A; Vasquez G; Murray S; Migawa MT; Liang XH; Swayze EE; Crooke ST; Seth PP Nucleic Acids Res; 2020 Feb; 48(4):1691-1700. PubMed ID: 31980820 [TBL] [Abstract][Full Text] [Related]
9. Binding affinity and specificity of Escherichia coli RNase H1: impact on the kinetics of catalysis of antisense oligonucleotide-RNA hybrids. Lima WF; Crooke ST Biochemistry; 1997 Jan; 36(2):390-8. PubMed ID: 9003192 [TBL] [Abstract][Full Text] [Related]
11. Translation can affect the antisense activity of RNase H1-dependent oligonucleotides targeting mRNAs. Liang XH; Nichols JG; Sun H; Crooke ST Nucleic Acids Res; 2018 Jan; 46(1):293-313. PubMed ID: 29165591 [TBL] [Abstract][Full Text] [Related]
12. Influence of mismatched and bulged nucleotides on SNP-preferential RNase H cleavage of RNA-antisense gapmer heteroduplexes. Magner D; Biala E; Lisowiec-Wachnicka J; Kierzek R Sci Rep; 2017 Oct; 7(1):12532. PubMed ID: 28970564 [TBL] [Abstract][Full Text] [Related]
13. Preventing formation of toxic N-terminal huntingtin fragments through antisense oligonucleotide-mediated protein modification. Evers MM; Tran HD; Zalachoras I; Meijer OC; den Dunnen JT; van Ommen GJ; Aartsma-Rus A; van Roon-Mom WM Nucleic Acid Ther; 2014 Feb; 24(1):4-12. PubMed ID: 24380395 [TBL] [Abstract][Full Text] [Related]
14. The positional influence of the helical geometry of the heteroduplex substrate on human RNase H1 catalysis. Lima WF; Rose JB; Nichols JG; Wu H; Migawa MT; Wyrzykiewicz TK; Vasquez G; Swayze EE; Crooke ST Mol Pharmacol; 2007 Jan; 71(1):73-82. PubMed ID: 17028157 [TBL] [Abstract][Full Text] [Related]
15. The rates of the major steps in the molecular mechanism of RNase H1-dependent antisense oligonucleotide induced degradation of RNA. Vickers TA; Crooke ST Nucleic Acids Res; 2015 Oct; 43(18):8955-63. PubMed ID: 26384424 [TBL] [Abstract][Full Text] [Related]
17. Binding of phosphorothioate oligonucleotides with RNase H1 can cause conformational changes in the protein and alter the interactions of RNase H1 with other proteins. Zhang L; Vickers TA; Sun H; Liang XH; Crooke ST Nucleic Acids Res; 2021 Mar; 49(5):2721-2739. PubMed ID: 33577678 [TBL] [Abstract][Full Text] [Related]
18. A novel integrated strategy (full length gene targeting) for mRNA accessible site tagging combined with microarray hybridization/RNase H cleavage to screen effective antisense oligonucleotides. Sun Y; Duan M; Lin R; Wang D; Li C; Bo X; Wang S Mol Vis; 2006 Nov; 12():1364-71. PubMed ID: 17149362 [TBL] [Abstract][Full Text] [Related]
19. Antisense oligonucleotides capable of promoting specific target mRNA reduction via competing RNase H1-dependent and independent mechanisms. Vickers TA; Crooke ST PLoS One; 2014; 9(10):e108625. PubMed ID: 25299183 [TBL] [Abstract][Full Text] [Related]
20. Comparison of the RNase H cleavage kinetics and blood serum stability of the north-conformationally constrained and 2'-alkoxy modified oligonucleotides. Honcharenko D; Barman J; Varghese OP; Chattopadhyaya J Biochemistry; 2007 May; 46(19):5635-46. PubMed ID: 17411072 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]