These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 26222332)

  • 1. Molecular Dynamics Simulation Study of the Early Stages of Nucleation of Iron Oxyhydroxide Nanoparticles in Aqueous Solutions.
    Zhang H; Waychunas GA; Banfield JF
    J Phys Chem B; 2015 Aug; 119(33):10630-42. PubMed ID: 26222332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical Study of Small Iron-Oxyhydroxide Clusters and Formation of Ferrihydrite.
    Das B
    J Phys Chem A; 2018 Jan; 122(2):652-661. PubMed ID: 29262686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ferrihydrite Formation: The Role of Fe13 Keggin Clusters.
    Weatherill JS; Morris K; Bots P; Stawski TM; Janssen A; Abrahamsen L; Blackham R; Shaw S
    Environ Sci Technol; 2016 Sep; 50(17):9333-42. PubMed ID: 27480123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ structural characterization of ferric iron dimers in aqueous solutions: identification of μ-oxo species.
    Zhu M; Puls BW; Frandsen C; Kubicki JD; Zhang H; Waychunas GA
    Inorg Chem; 2013 Jun; 52(12):6788-97. PubMed ID: 23701439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anchoring of Iron Oxyhydroxide Clusters at H and L Ferritin Subunits.
    Lid S; Carmona D; Maas M; Treccani L; Colombi Ciacchi L
    ACS Biomater Sci Eng; 2018 Feb; 4(2):483-490. PubMed ID: 33418738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal growth. Aqueous formation and manipulation of the iron-oxo Keggin ion.
    Sadeghi O; Zakharov LN; Nyman M
    Science; 2015 Mar; 347(6228):1359-62. PubMed ID: 25721507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms and efficiency of the simultaneous removal of metals and cyanides by using ferrate(VI): crucial roles of nanocrystalline iron(III) oxyhydroxides and metal carbonates.
    Filip J; Yngard RA; Siskova K; Marusak Z; Ettler V; Sajdl P; Sharma VK; Zboril R
    Chemistry; 2011 Aug; 17(36):10097-105. PubMed ID: 21793060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum chemical molecular dynamics simulation of single-walled carbon nanotube cap nucleation on an iron particle.
    Ohta Y; Okamoto Y; Page AJ; Irle S; Morokuma K
    ACS Nano; 2009 Nov; 3(11):3413-20. PubMed ID: 19827761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards an understanding of the nucleation of alpha-para amino benzoic acid from ethanolic solutions: a multi-scale approach.
    Toroz D; Rosbottom I; Turner TD; Corzo DM; Hammond RB; Lai X; Roberts KJ
    Faraday Discuss; 2015; 179():79-114. PubMed ID: 25920721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An aggregation-volume-bias Monte Carlo investigation on the condensation of a Lennard-Jones vapor below the triple point and crystal nucleation in cluster systems: an in-depth evaluation of the classical nucleation theory.
    Chen B; Kim H; Keasler SJ; Nellas RB
    J Phys Chem B; 2008 Apr; 112(13):4067-78. PubMed ID: 18335920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleation process in the cavity of a 48-tungstophosphate wheel resulting in a 16-metal-centre iron oxide nanocluster.
    Mal SS; Dickman MH; Kortz U; Todea AM; Merca A; Bögge H; Glaser T; Müller A; Nellutla S; Kaur N; van Tol J; Dalal NS; Keita B; Nadjo L
    Chemistry; 2008; 14(4):1186-95. PubMed ID: 18165953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding of As
    De Dalui S; Das B
    J Phys Chem A; 2022 Feb; 126(5):670-684. PubMed ID: 35084850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms for iron oxide formation under hydrothermal conditions: an in situ total scattering study.
    Jensen KM; Andersen HL; Tyrsted C; Bøjesen ED; Dippel AC; Lock N; Billinge SJ; Iversen BB; Christensen M
    ACS Nano; 2014 Oct; 8(10):10704-14. PubMed ID: 25256366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics investigation of the local structure in iron melts and its role in crystal nucleation during rapid solidification.
    Zhang Q; Wang J; Tang S; Wang Y; Li J; Zhou W; Wang Z
    Phys Chem Chem Phys; 2019 Feb; 21(8):4122-4135. PubMed ID: 30515507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics simulations of growth and properties of FeCl2-NaCl-nanoparticles in supercritical water.
    Lümmen N; Kvamme B
    Phys Chem Chem Phys; 2009 Nov; 11(41):9504-13. PubMed ID: 19830335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and dynamics of potassium chloride in aqueous solution.
    Sindt JO; Alexander AJ; Camp PJ
    J Phys Chem B; 2014 Aug; 118(31):9404-13. PubMed ID: 25027561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amorphization and thermal stability of aluminum-based nanoparticles prepared from the rapid cooling of nanodroplets: effect of iron addition.
    Xiao S; Li X; Deng H; Deng L; Hu W
    Phys Chem Chem Phys; 2015 Mar; 17(9):6511-22. PubMed ID: 25656373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A classical view on nonclassical nucleation.
    Smeets PJM; Finney AR; Habraken WJEM; Nudelman F; Friedrich H; Laven J; De Yoreo JJ; Rodger PM; Sommerdijk NAJM
    Proc Natl Acad Sci U S A; 2017 Sep; 114(38):E7882-E7890. PubMed ID: 28874584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ferric oxyhydroxide microparticles in water.
    Whittemore DO; Langmuir D
    Environ Health Perspect; 1974 Dec; 9():173-6. PubMed ID: 4470932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleation of NaCl nanoparticles in supercritical water: molecular dynamics simulations.
    Nahtigal IG; Zasetsky AY; Svishchev IM
    J Phys Chem B; 2008 Jun; 112(25):7537-43. PubMed ID: 18512978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.