These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 2622236)

  • 1. Analysis of the dynamic characteristics of pressure transducers for studying respiratory mechanics at high frequencies.
    Farré R; Peslin R; Navajas D; Gallina C; Suki B
    Med Biol Eng Comput; 1989 Sep; 27(5):531-7. PubMed ID: 2622236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of gas density on the frequency response of gas-filled pressure transducers.
    Francis G; Gelfand R; Peterson RE
    J Appl Physiol Respir Environ Exerc Physiol; 1979 Sep; 47(3):631-7. PubMed ID: 533759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A correction procedure for the asymmetry of differential pressure transducers in respiratory impedance measurements.
    Farré R; Navajas D; Peslin R; Rotger M; Duvivier C
    IEEE Trans Biomed Eng; 1989 Nov; 36(11):1137-40. PubMed ID: 2807323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of the frequency response and common-mode gain of neonatal respiratory pressure and flow measurement systems. Part 2: Results.
    Turner MJ; Macleod IM; Rothberg AD
    Clin Phys Physiol Meas; 1989 Aug; 10(3):231-40. PubMed ID: 2627765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human respiratory impedance from 8 to 256 Hz corrected for upper airway shunt.
    Farre R; Peslin R; Oostveen E; Suki B; Duvivier C; Navajas D
    J Appl Physiol (1985); 1989 Nov; 67(5):1973-81. PubMed ID: 2600029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new optical transducer for arterial pressure measurement.
    Hackman CH; Tan PS; Chakrabarti MK; Whitwam JG
    Br J Anaesth; 1991 Sep; 67(3):346-52. PubMed ID: 1911027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frequency characteristics of pressure transducer kits with inserted pressure-resistant extension tubes.
    Fujiwara S; Mori S; Tachihara K; Yamamoto T; Yokoe C; Imaizumi U; Morimoto Y; Miki Y; Toyoguchi I; Yoshida KI; Yokoyama T
    J Clin Monit Comput; 2017 Apr; 31(2):371-380. PubMed ID: 26946147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-phase rejection requirements for measuring respiratory input impedance.
    Peslin R; Jardin P; Duvivier C; Begin P
    J Appl Physiol Respir Environ Exerc Physiol; 1984 Mar; 56(3):804-9. PubMed ID: 6706784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Respiratory impedance to ambient pressure changes at low frequencies.
    Peslin R; Duvivier C; Suki B; Farre R; Oostveen E; Gallina C
    J Appl Physiol (1985); 1990 Feb; 68(2):665-71. PubMed ID: 2318778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of respiratory mechanics using the Puritan-Bennett 7200a ventilator.
    Chartrand D; Dionne B; Jodoin C; Lorange M; Lapointe A
    Can J Anaesth; 1993 Nov; 40(11):1076-83. PubMed ID: 8269571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-point calibration procedure of the forced oscillation technique.
    Desager KN; Cauberghs M; Van de Woestijne KP
    Med Biol Eng Comput; 1997 Nov; 35(6):752-6. PubMed ID: 9538557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of lung sound transducers using a bioacoustic transducer testing system.
    Kraman SS; Wodicka GR; Pressler GA; Pasterkamp H
    J Appl Physiol (1985); 2006 Aug; 101(2):469-76. PubMed ID: 16627681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computer simulation of respiratory impedance and flow transfer functions during high frequency oscillations.
    Peslin R
    Br J Anaesth; 1989; 63(7 Suppl 1):91S-94S. PubMed ID: 2611083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of transducer defect in respiratory impedance measurements by forced random noise. Correction of experimental data.
    Delavault E; Saumon G; Georges R
    Respir Physiol; 1980 Apr; 40(1):107-117. PubMed ID: 6446749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [A device for studying respiratory mechanics by the forced oscillation technique].
    D'iachenko AI; Nacke HG
    Med Tekh; 1993; (2):27-30. PubMed ID: 8502151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the frequency response characteristics of catheter-mounted piezoelectric and micromanometric phonotransducers.
    Garcia JC; Layton SA; Rubal BJ
    Cathet Cardiovasc Diagn; 1989 May; 17(1):48-55. PubMed ID: 2720766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impedance matching network for high frequency ultrasonic transducer for cellular applications.
    Kim MG; Yoon S; Kim HH; Shung KK
    Ultrasonics; 2016 Feb; 65():258-67. PubMed ID: 26442434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An anatomically based hybrid computational model of the human lung and its application to low frequency oscillatory mechanics.
    Ma B; Lutchen KR
    Ann Biomed Eng; 2006 Nov; 34(11):1691-704. PubMed ID: 17019619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An experimental comparison of different methods of measuring wave propagation in viscoelastic tubes.
    Ursino M; Artioli E; Gallerani M
    J Biomech; 1994 Jul; 27(7):979-90. PubMed ID: 8063848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of fractional order model parameters of respiratory mechanical impedance in total liquid ventilation.
    Beaulieu A; Bossé D; Micheau P; Avoine O; Praud JP; Walti H
    IEEE Trans Biomed Eng; 2012 Feb; 59(2):323-31. PubMed ID: 21947517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.