These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 26222423)

  • 1. Design of a reversible inversed pH-responsive caged protein.
    Peng T; Lee H; Lim S
    Biomater Sci; 2015 Apr; 3(4):627-35. PubMed ID: 26222423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of a pH-dependent molecular switch in a caged protein platform.
    Dalmau M; Lim S; Wang SW
    Nano Lett; 2009 Jan; 9(1):160-6. PubMed ID: 19113890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolating a trimer intermediate in the self-assembly of E2 protein cage.
    Peng T; Lee H; Lim S
    Biomacromolecules; 2012 Mar; 13(3):699-705. PubMed ID: 22320400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The incorporation of GALA peptide into a protein cage for an acid-inducible molecular switch.
    Choi SH; Choi K; Chan Kwon I; Ahn HJ
    Biomaterials; 2010 Jul; 31(19):5191-8. PubMed ID: 20359742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH-triggered disassembly in a caged protein complex.
    Dalmau M; Lim S; Wang SW
    Biomacromolecules; 2009 Dec; 10(12):3199-206. PubMed ID: 19874026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rational design of a reversible pH-responsive switch for peptide self-assembly.
    Zimenkov Y; Dublin SN; Ni R; Tu RS; Breedveld V; Apkarian RP; Conticello VP
    J Am Chem Soc; 2006 May; 128(21):6770-1. PubMed ID: 16719440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Switchable Hydrolase Based on Reversible Formation of Supramolecular Catalytic Site Using a Self-Assembling Peptide.
    Zhang C; Shafi R; Lampel A; MacPherson D; Pappas CG; Narang V; Wang T; Maldarelli C; Ulijn RV
    Angew Chem Int Ed Engl; 2017 Nov; 56(46):14511-14515. PubMed ID: 28941038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Designing peptide based nanomaterials.
    Ulijn RV; Smith AM
    Chem Soc Rev; 2008 Apr; 37(4):664-75. PubMed ID: 18362975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Templated assembly of the pH-sensitive membrane-lytic peptide GALA.
    Haas DH; Murphy RM
    J Pept Res; 2004 Jun; 63(6):451-9. PubMed ID: 15175017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GALA: a designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery.
    Li W; Nicol F; Szoka FC
    Adv Drug Deliv Rev; 2004 Apr; 56(7):967-85. PubMed ID: 15066755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering responsive mechanisms to control the assembly of peptide-based nanostructures.
    Dublin S; Zimenkov Y; Conticello VP
    Biochem Soc Trans; 2009 Aug; 37(Pt 4):653-9. PubMed ID: 19614570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering a responsive DNA triple helix into an octahedral DNA nanostructure for a reversible opening/closing switching mechanism: a computational and experimental integrated study.
    Ottaviani A; Iacovelli F; Idili A; Falconi M; Ricci F; Desideri A
    Nucleic Acids Res; 2018 Nov; 46(19):9951-9959. PubMed ID: 30247614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rational design of MMP degradable peptide-based supramolecular filaments.
    Lin YA; Ou YC; Cheetham AG; Cui H
    Biomacromolecules; 2014 Apr; 15(4):1419-27. PubMed ID: 24611531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimuli responsive fibrous hydrogels from hierarchical self-assembly of a triblock copolypeptide.
    Popescu MT; Liontos G; Avgeropoulos A; Tsitsilianis C
    Soft Matter; 2015 Jan; 11(2):331-42. PubMed ID: 25379651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversible pH-controlled DNA-binding peptide nanotweezers: an in-silico study.
    Sharma G; Rege K; Budil DE; Yarmush ML; Mavroidis C
    Int J Nanomedicine; 2008; 3(4):505-21. PubMed ID: 19337419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling the self-assembly of metal-seamed organic nanocapsules.
    Kumari H; Mossine AV; Kline SR; Dennis CL; Fowler DA; Teat SJ; Barnes CL; Deakyne CA; Atwood JL
    Angew Chem Int Ed Engl; 2012 Feb; 51(6):1452-4. PubMed ID: 22294358
    [No Abstract]   [Full Text] [Related]  

  • 17. Self-assembly and nanoaggregation of a pH responsive DNA hybrid amphiphile.
    Yan Y; Sun Y; Yu H; Xu H; Lu JR
    Soft Matter; 2015 Mar; 11(9):1748-54. PubMed ID: 25603356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal Ion-Induced Self-Assembly of a Multi-Responsive Block Copolypeptide into Well-Defined Nanocapsules.
    van Eldijk MB; Schoonen L; Cornelissen JJ; Nolte RJ; van Hest JC
    Small; 2016 May; 12(18):2476-83. PubMed ID: 27151830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sticky water surfaces: helix-coil transitions suppressed in a cell-penetrating peptide at the air-water interface.
    Schach D; Globisch C; Roeters SJ; Woutersen S; Fuchs A; Weiss CK; Backus EH; Landfester K; Bonn M; Peter C; Weidner T
    J Chem Phys; 2014 Dec; 141(22):22D517. PubMed ID: 25494788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pH-responsive micelles and vesicles nanocapsules based on polypeptide diblock copolymers.
    Chécot F; Rodríguez-Hernández J; Gnanou Y; Lecommandoux S
    Biomol Eng; 2007 Feb; 24(1):81-5. PubMed ID: 16870504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.