These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 26222446)

  • 1. A techno-economic model of a solid oxide electrolysis system.
    Milobar DG; Hartvigsen JJ; Elangovan S
    Faraday Discuss; 2015; 182():329-39. PubMed ID: 26222446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Why solid oxide cells can be reversibly operated in solid oxide electrolysis cell and fuel cell modes?
    Chen K; Liu SS; Ai N; Koyama M; Jiang SP
    Phys Chem Chem Phys; 2015 Dec; 17(46):31308-15. PubMed ID: 26548929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides.
    Bi L; Boulfrad S; Traversa E
    Chem Soc Rev; 2014 Dec; 43(24):8255-70. PubMed ID: 25134016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A review of high temperature co-electrolysis of H
    Zheng Y; Wang J; Yu B; Zhang W; Chen J; Qiao J; Zhang J
    Chem Soc Rev; 2017 Mar; 46(5):1427-1463. PubMed ID: 28165079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tri-Doped BaCeO
    Rajendran S; Thangavel NK; Ding H; Ding Y; Ding D; Reddy Arava LM
    ACS Appl Mater Interfaces; 2020 Aug; 12(34):38275-38284. PubMed ID: 32786238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Syngas production by high temperature steam/CO2 coelectrolysis using solid oxide electrolysis cells.
    Chen X; Guan C; Xiao G; Du X; Wang JQ
    Faraday Discuss; 2015; 182():341-51. PubMed ID: 26204849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-electrolysis of steam and CO2 in full-ceramic symmetrical SOECs: a strategy for avoiding the use of hydrogen as a safe gas.
    Torrell M; García-Rodríguez S; Morata A; Penelas G; Tarancón A
    Faraday Discuss; 2015; 182():241-55. PubMed ID: 26204959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface Chemistry of Perovskite-Type Electrodes During High Temperature CO
    Opitz AK; Nenning A; Rameshan C; Kubicek M; Götsch T; Blume R; Hävecker M; Knop-Gericke A; Rupprechter G; Klötzer B; Fleig J
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):35847-35860. PubMed ID: 28933825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Self-Architectured Steam Electrode Enabled Efficient and Durable Hydrogen Production in a Proton-Conducting Solid Oxide Electrolysis Cell at Temperatures Lower Than 600 °C.
    Wu W; Ding H; Zhang Y; Ding Y; Katiyar P; Majumdar PK; He T; Ding D
    Adv Sci (Weinh); 2018 Nov; 5(11):1800360. PubMed ID: 30479914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances in solid oxide cell technology for electrolysis.
    Hauch A; Küngas R; Blennow P; Hansen AB; Hansen JB; Mathiesen BV; Mogensen MB
    Science; 2020 Oct; 370(6513):. PubMed ID: 33033189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of Electrode Design and Contacting Layers on Performance of Electrolyte Supported SOFC/SOEC Single Cells.
    Kusnezoff M; Trofimenko N; Müller M; Michaelis A
    Materials (Basel); 2016 Nov; 9(11):. PubMed ID: 28774024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High Temperature Solid Oxide Electrolysis for Green Hydrogen Production.
    Liu H; Yu M; Tong X; Wang Q; Chen M
    Chem Rev; 2024 Sep; 124(18):10509-10576. PubMed ID: 39167109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Achieving High Efficiency and Eliminating Degradation in Solid Oxide Electrochemical Cells Using High Oxygen-Capacity Perovskite.
    Jun A; Kim J; Shin J; Kim G
    Angew Chem Int Ed Engl; 2016 Sep; 55(40):12512-5. PubMed ID: 27604172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrofuel Synthesis from Variable Renewable Electricity: An Optimization-Based Techno-Economic Analysis.
    Sherwin ED
    Environ Sci Technol; 2021 Jun; 55(11):7583-7594. PubMed ID: 33983018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Temperature CO
    Song Y; Zhang X; Xie K; Wang G; Bao X
    Adv Mater; 2019 Dec; 31(50):e1902033. PubMed ID: 31282069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance evaluation and economic analysis of integrated solid oxide electrolyzer cell and proton exchange membrane fuel cell for power generation.
    Abdollahipour A; Sayyaadi H
    Heliyon; 2024 Jul; 10(14):e34631. PubMed ID: 39113979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solid oxide electrolysis--a key enabling technology for sustainable energy scenarios.
    Hansen JB
    Faraday Discuss; 2015; 182():9-48. PubMed ID: 26495443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excellent Electrochemical Performance of La
    Hou Y; Wang L; Bian L; Wang Y; Chou KC
    ACS Appl Mater Interfaces; 2021 May; 13(19):22381-22390. PubMed ID: 33955728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eliminating degradation in solid oxide electrochemical cells by reversible operation.
    Graves C; Ebbesen SD; Jensen SH; Simonsen SB; Mogensen MB
    Nat Mater; 2015 Feb; 14(2):239-44. PubMed ID: 25532070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Steam to Carbon Dioxide Ratio on the Performance of a Solid Oxide Cell for H
    Bimpiri N; Konstantinidou A; Tsiplakides D; Balomenou S; Papazisi KM
    Nanomaterials (Basel); 2023 Jan; 13(2):. PubMed ID: 36678051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.