These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Syngas production by high temperature steam/CO2 coelectrolysis using solid oxide electrolysis cells. Chen X; Guan C; Xiao G; Du X; Wang JQ Faraday Discuss; 2015; 182():341-51. PubMed ID: 26204849 [TBL] [Abstract][Full Text] [Related]
7. Co-electrolysis of steam and CO2 in full-ceramic symmetrical SOECs: a strategy for avoiding the use of hydrogen as a safe gas. Torrell M; García-Rodríguez S; Morata A; Penelas G; Tarancón A Faraday Discuss; 2015; 182():241-55. PubMed ID: 26204959 [TBL] [Abstract][Full Text] [Related]
8. Surface Chemistry of Perovskite-Type Electrodes During High Temperature CO Opitz AK; Nenning A; Rameshan C; Kubicek M; Götsch T; Blume R; Hävecker M; Knop-Gericke A; Rupprechter G; Klötzer B; Fleig J ACS Appl Mater Interfaces; 2017 Oct; 9(41):35847-35860. PubMed ID: 28933825 [TBL] [Abstract][Full Text] [Related]
9. 3D Self-Architectured Steam Electrode Enabled Efficient and Durable Hydrogen Production in a Proton-Conducting Solid Oxide Electrolysis Cell at Temperatures Lower Than 600 °C. Wu W; Ding H; Zhang Y; Ding Y; Katiyar P; Majumdar PK; He T; Ding D Adv Sci (Weinh); 2018 Nov; 5(11):1800360. PubMed ID: 30479914 [TBL] [Abstract][Full Text] [Related]
11. Influence of Electrode Design and Contacting Layers on Performance of Electrolyte Supported SOFC/SOEC Single Cells. Kusnezoff M; Trofimenko N; Müller M; Michaelis A Materials (Basel); 2016 Nov; 9(11):. PubMed ID: 28774024 [TBL] [Abstract][Full Text] [Related]
12. High Temperature Solid Oxide Electrolysis for Green Hydrogen Production. Liu H; Yu M; Tong X; Wang Q; Chen M Chem Rev; 2024 Sep; 124(18):10509-10576. PubMed ID: 39167109 [TBL] [Abstract][Full Text] [Related]
13. Achieving High Efficiency and Eliminating Degradation in Solid Oxide Electrochemical Cells Using High Oxygen-Capacity Perovskite. Jun A; Kim J; Shin J; Kim G Angew Chem Int Ed Engl; 2016 Sep; 55(40):12512-5. PubMed ID: 27604172 [TBL] [Abstract][Full Text] [Related]
14. Electrofuel Synthesis from Variable Renewable Electricity: An Optimization-Based Techno-Economic Analysis. Sherwin ED Environ Sci Technol; 2021 Jun; 55(11):7583-7594. PubMed ID: 33983018 [TBL] [Abstract][Full Text] [Related]
15. High-Temperature CO Song Y; Zhang X; Xie K; Wang G; Bao X Adv Mater; 2019 Dec; 31(50):e1902033. PubMed ID: 31282069 [TBL] [Abstract][Full Text] [Related]
16. Performance evaluation and economic analysis of integrated solid oxide electrolyzer cell and proton exchange membrane fuel cell for power generation. Abdollahipour A; Sayyaadi H Heliyon; 2024 Jul; 10(14):e34631. PubMed ID: 39113979 [TBL] [Abstract][Full Text] [Related]
20. Effect of Steam to Carbon Dioxide Ratio on the Performance of a Solid Oxide Cell for H Bimpiri N; Konstantinidou A; Tsiplakides D; Balomenou S; Papazisi KM Nanomaterials (Basel); 2023 Jan; 13(2):. PubMed ID: 36678051 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]