These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
335 related articles for article (PubMed ID: 26222527)
1. Cold Atmospheric Plasma Modified Electrospun Scaffolds with Embedded Microspheres for Improved Cartilage Regeneration. Zhu W; Castro NJ; Cheng X; Keidar M; Zhang LG PLoS One; 2015; 10(7):e0134729. PubMed ID: 26222527 [TBL] [Abstract][Full Text] [Related]
2. Integrating cold atmospheric plasma with 3D printed bioactive nanocomposite scaffold for cartilage regeneration. Lee SJ; Yan D; Zhou X; Cui H; Esworthy T; Hann SY; Keidar M; Zhang LG Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110844. PubMed ID: 32279780 [TBL] [Abstract][Full Text] [Related]
3. Suppressing mesenchymal stem cell hypertrophy and endochondral ossification in 3D cartilage regeneration with nanofibrous poly(l-lactic acid) scaffold and matrilin-3. Liu Q; Wang J; Chen Y; Zhang Z; Saunders L; Schipani E; Chen Q; Ma PX Acta Biomater; 2018 Aug; 76():29-38. PubMed ID: 29940371 [TBL] [Abstract][Full Text] [Related]
4. Microenvironmentally optimized 3D-printed TGFβ-functionalized scaffolds facilitate endogenous cartilage regeneration in sheep. Yang Z; Cao F; Li H; He S; Zhao T; Deng H; Li J; Sun Z; Hao C; Xu J; Guo Q; Liu S; Guo W Acta Biomater; 2022 Sep; 150():181-198. PubMed ID: 35896136 [TBL] [Abstract][Full Text] [Related]
5. Cryogenic 3D printing of heterogeneous scaffolds with gradient mechanical strengths and spatial delivery of osteogenic peptide/TGF-β1 for osteochondral tissue regeneration. Wang C; Yue H; Huang W; Lin X; Xie X; He Z; He X; Liu S; Bai L; Lu B; Wei Y; Wang M Biofabrication; 2020 Mar; 12(2):025030. PubMed ID: 32106097 [TBL] [Abstract][Full Text] [Related]
6. Enhanced human bone marrow mesenchymal stem cell functions in novel 3D cartilage scaffolds with hydrogen treated multi-walled carbon nanotubes. Holmes B; Castro NJ; Li J; Keidar M; Zhang LG Nanotechnology; 2013 Sep; 24(36):365102. PubMed ID: 23959974 [TBL] [Abstract][Full Text] [Related]
7. Electrospun Fibers for Cartilage Tissue Regeneration. Li G; Shi S; Lin S; Zhou T; Shao X; Huang Q; Zhu B; Cai X Curr Stem Cell Res Ther; 2018; 13(7):591-599. PubMed ID: 29663898 [TBL] [Abstract][Full Text] [Related]
8. Layering PLGA-based electrospun membranes and cell sheets for engineering cartilage-bone transition. Mouthuy PA; El-Sherbini Y; Cui Z; Ye H J Tissue Eng Regen Med; 2016 Apr; 10(4):E263-74. PubMed ID: 23754692 [TBL] [Abstract][Full Text] [Related]
9. Histological and biomechanical properties of regenerated articular cartilage using chondrogenic bone marrow stromal cells with a PLGA scaffold in vivo. Han SH; Kim YH; Park MS; Kim IA; Shin JW; Yang WI; Jee KS; Park KD; Ryu GH; Lee JW J Biomed Mater Res A; 2008 Dec; 87(4):850-61. PubMed ID: 18200543 [TBL] [Abstract][Full Text] [Related]
10. Microspheres containing decellularized cartilage induce chondrogenesis in vitro and remain functional after incorporation within a poly(caprolactone) filament useful for fabricating a 3D scaffold. Ghosh P; Gruber SMS; Lin CY; Whitlock PW Biofabrication; 2018 Feb; 10(2):025007. PubMed ID: 29394158 [TBL] [Abstract][Full Text] [Related]
11. HBC-nanofiber hydrogel scaffolds with 3D printed internal microchannels for enhanced cartilage differentiation. Liu X; Song S; Huang J; Fu H; Ning X; He Y; Zhang Z J Mater Chem B; 2020 Jul; 8(28):6115-6127. PubMed ID: 32558871 [TBL] [Abstract][Full Text] [Related]
12. Assessment of Scaffolding Properties for Chondrogenic Differentiation of Adipose-Derived Mesenchymal Stem Cells in Nasal Reconstruction. San-Marina S; Sharma A; Voss SG; Janus JR; Hamilton GS JAMA Facial Plast Surg; 2017 Mar; 19(2):108-114. PubMed ID: 27737438 [TBL] [Abstract][Full Text] [Related]
13. Design of biomimetic and bioactive cold plasma-modified nanostructured scaffolds for enhanced osteogenic differentiation of bone marrow-derived mesenchymal stem cells. Wang M; Cheng X; Zhu W; Holmes B; Keidar M; Zhang LG Tissue Eng Part A; 2014 Mar; 20(5-6):1060-71. PubMed ID: 24219622 [TBL] [Abstract][Full Text] [Related]
14. In vitro chondrocyte behavior on porous biodegradable poly(e-caprolactone)/polyglycolic acid scaffolds for articular chondrocyte adhesion and proliferation. Jonnalagadda JB; Rivero IV; Dertien JS J Biomater Sci Polym Ed; 2015; 26(7):401-19. PubMed ID: 25671317 [TBL] [Abstract][Full Text] [Related]
16. Collagen/silk fibroin composite scaffold incorporated with PLGA microsphere for cartilage repair. Wang J; Yang Q; Cheng N; Tao X; Zhang Z; Sun X; Zhang Q Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():705-11. PubMed ID: 26838900 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of the potential of kartogenin encapsulated poly(L-lactic acid-co-caprolactone)/collagen nanofibers for tracheal cartilage regeneration. Yin H; Wang J; Gu Z; Feng W; Gao M; Wu Y; Zheng H; He X; Mo X J Biomater Appl; 2017 Sep; 32(3):331-341. PubMed ID: 28658997 [TBL] [Abstract][Full Text] [Related]
18. Cold atmospheric plasma (CAP)-modified and bioactive protein-loaded core-shell nanofibers for bone tissue engineering applications. Wang M; Zhou Y; Shi D; Chang R; Zhang J; Keidar M; Webster TJ Biomater Sci; 2019 May; 7(6):2430-2439. PubMed ID: 30933194 [TBL] [Abstract][Full Text] [Related]
19. PD98059-impregnated functional PLGA scaffold for direct tissue engineering promotes chondrogenesis and prevents hypertrophy from mesenchymal stem cells. Lee JM; Kim JD; Oh EJ; Oh SH; Lee JH; Im GI Tissue Eng Part A; 2014 Mar; 20(5-6):982-91. PubMed ID: 24188591 [TBL] [Abstract][Full Text] [Related]
20. Antimicrobial Activity of 3D-Printed Poly(ε-Caprolactone) (PCL) Composite Scaffolds Presenting Vancomycin-Loaded Polylactic Acid-Glycolic Acid (PLGA) Microspheres. Zhou Z; Yao Q; Li L; Zhang X; Wei B; Yuan L; Wang L Med Sci Monit; 2018 Sep; 24():6934-6945. PubMed ID: 30269152 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]