These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 26222541)

  • 1. Conductive-AFM Patterning of Organic Semiconductors.
    Brown BP; Picco L; Miles MJ; Faul CF
    Small; 2015 Oct; 11(38):5054-8. PubMed ID: 26222541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sub-10-nm patterning of oligo(ethylene glycol) monolayers on silicon surfaces via local oxidation using a conductive atomic force microscope.
    Qin G; Cai C
    Nanotechnology; 2009 Sep; 20(35):355306. PubMed ID: 19671957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscale multilevel switching in Ge2Sb2Te5 thin film with conductive atomic force microscopy.
    Yang F; Xu L; Chen J; Xu J; Yu Y; Ma Z; Chen K
    Nanotechnology; 2016 Jan; 27(3):035706. PubMed ID: 26651151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electro pen nanolithography.
    Cai Y; Ocko BM
    J Am Chem Soc; 2005 Nov; 127(46):16287-91. PubMed ID: 16287322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-step electrochemical nanolithography of metal thin films by localized etching with an AFM tip.
    de Abril O; Gündel A; Maroun F; Allongue P; Schuster R
    Nanotechnology; 2008 Aug; 19(32):325301. PubMed ID: 21828808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemically nanopatterned conducting coronas of a conjugated polymer precursor: SPM parameters and polymer composition.
    Jegadesan S; Taranekar P; Sindhu S; Advincula RC; Valiyaveettil S
    Langmuir; 2006 Apr; 22(8):3807-11. PubMed ID: 16584259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct electrochemical nanopatterning of polycarbazole monomer and precursor polymer films: ambient formation of thermally stable conducting nanopatterns.
    Jegadesan S; Sindhu S; Advincula RC; Valiyaveettil S
    Langmuir; 2006 Jan; 22(2):780-6. PubMed ID: 16401131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degeneracy and instability of nanocontacts between conductive tips and hydrogenated nanocrystalline Si surfaces in conductive atomic force microscopy.
    Cavalcoli D; Rossi M; Tomasi A; Cavallini A
    Nanotechnology; 2009 Jan; 20(4):045702. PubMed ID: 19417328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of electron irradiation on the electronic transport mechanisms during the conductive AFM imaging of InAs/GaAs quantum dots capped with a thin GaAs layer.
    Troyon M; Smaali K
    Nanotechnology; 2008 Jun; 19(25):255709. PubMed ID: 21828669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of the tip-sample contact force on the nanostructure size fabricated by local oxidation nanolithography.
    Hu K; Wu S; Huang M; Hu X; Wang Q
    Ultramicroscopy; 2012 Apr; 115():7-13. PubMed ID: 22446199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct nanofabrication of copper on silicon substrate by electrochemical atomic force microscope lithography.
    Kwon G; Lee H
    J Nanosci Nanotechnol; 2009 Dec; 9(12):7076-9. PubMed ID: 19908731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Area-selective growth of functional molecular architectures.
    Wang W; Chi L
    Acc Chem Res; 2012 Oct; 45(10):1646-56. PubMed ID: 22830409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical direct writing and erasing of silver nanostructures on phosphate glass using atomic force microscopy.
    Barna SF; Jacobs KE; Mensing GA; Ferreira PM
    Nanotechnology; 2017 Feb; 28(6):065301. PubMed ID: 28045006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Piezoelectric bimorph-based scanner in the tip-scan mode for high speed atomic force microscope.
    Zhao J; Gong W; Cai W; Shang G
    Rev Sci Instrum; 2013 Aug; 84(8):083706. PubMed ID: 24007072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscale electrical and mechanical characteristics of conductive polyaniline network in polymer composite films.
    Jafarzadeh S; Claesson PM; Sundell PE; Pan J; Thormann E
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):19168-75. PubMed ID: 25295701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrical property heterogeneity at transparent conductive oxide/organic semiconductor interfaces: mapping contact ohmicity using conducting-tip atomic force microscopy.
    MacDonald GA; Veneman PA; Placencia D; Armstrong NR
    ACS Nano; 2012 Nov; 6(11):9623-36. PubMed ID: 23030667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Guiding self-assembly with the tip of an atomic force microscope.
    Mesquida P; Stemmer A
    Scanning; 2002; 24(3):117-20. PubMed ID: 12074491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of nanoscale recording mark on Ge2Sb2Te5 film.
    Kim J; Kwon MH; Song KB
    Ultramicroscopy; 2008 Sep; 108(10):1246-50. PubMed ID: 18572324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An application of polarized domains in ferroelectric thin films using scanning probe microscope.
    Shin H; Lee KM; Moon WK; Jeon JU; Lim G; Pak YE; Park JH; Yoon KH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(4):801-7. PubMed ID: 18238612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate measurement of Atomic Force Microscope cantilever deflection excluding tip-surface contact with application to force calibration.
    Slattery AD; Blanch AJ; Quinton JS; Gibson CT
    Ultramicroscopy; 2013 Aug; 131():46-55. PubMed ID: 23685172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.