BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 26222595)

  • 21. Pluronic-based cationic block copolymer for forming pDNA polyplexes with enhanced cellular uptake and improved transfection efficiency.
    Lai TC; Kataoka K; Kwon GS
    Biomaterials; 2011 Jul; 32(20):4594-603. PubMed ID: 21453964
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The molecular structures of poly(ethylene glycol)-modified nonviral gene delivery polyplexes.
    Guo Y; Sun Y; Li G; Xu Y
    Mol Pharm; 2004; 1(6):477-82. PubMed ID: 16028359
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gene delivery by lipoplexes and polyplexes.
    Tros de Ilarduya C; Sun Y; Düzgüneş N
    Eur J Pharm Sci; 2010 Jun; 40(3):159-70. PubMed ID: 20359532
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dual environment-responsive polyplex carriers for enhanced intracellular delivery of plasmid DNA.
    Sanjoh M; Miyata K; Christie RJ; Ishii T; Maeda Y; Pittella F; Hiki S; Nishiyama N; Kataoka K
    Biomacromolecules; 2012 Nov; 13(11):3641-9. PubMed ID: 22994314
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intracellular Availability of pDNA and mRNA after Transfection: A Comparative Study among Polyplexes, Lipoplexes, and Lipopolyplexes.
    Gonçalves C; Akhter S; Pichon C; Midoux P
    Mol Pharm; 2016 Sep; 13(9):3153-63. PubMed ID: 27486998
    [TBL] [Abstract][Full Text] [Related]  

  • 26. New Insights into Gene Delivery to Human Neuronal Precursor NT2 Cells: A Comparative Study between Lipoplexes, Nioplexes, and Polyplexes.
    Agirre M; Ojeda E; Zarate J; Puras G; Grijalvo S; Eritja R; García del Caño G; Barrondo S; González-Burguera I; López de Jesús M; Sallés J; Pedraz JL
    Mol Pharm; 2015 Nov; 12(11):4056-66. PubMed ID: 26407108
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mannosylated Cationic Copolymers for Gene Delivery to Macrophages.
    Lopukhov AV; Yang Z; Haney MJ; Bronich TK; Sokolsky-Papkov M; Batrakova EV; Klyachko NL; Kabanov AV
    Macromol Biosci; 2021 Apr; 21(4):e2000371. PubMed ID: 33615675
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Systematic adjustment of charge densities and size of polyglycerol amines reduces cytotoxic effects and enhances cellular uptake.
    Hellmund M; Achazi K; Neumann F; Thota BN; Ma N; Haag R
    Biomater Sci; 2015 Nov; 3(11):1459-65. PubMed ID: 26244171
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation by fluorescence resonance energy transfer of the stability of nonviral gene delivery vectors under physiological conditions.
    Itaka K; Harada A; Nakamura K; Kawaguchi H; Kataoka K
    Biomacromolecules; 2002; 3(4):841-5. PubMed ID: 12099831
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DNA compaction into new DNA vectors based on cyclodextrin polymer: surface enhanced Raman spectroscopy characterization.
    Burckbuchler V; Wintgens V; Lecomte S; Percot A; Leborgne C; Danos O; Kichler A; Amiel C
    Biopolymers; 2006 Apr; 81(5):360-70. PubMed ID: 16358247
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Block catiomer polyplexes with regulated densities of charge and disulfide cross-linking directed to enhance gene expression.
    Miyata K; Kakizawa Y; Nishiyama N; Harada A; Yamasaki Y; Koyama H; Kataoka K
    J Am Chem Soc; 2004 Mar; 126(8):2355-61. PubMed ID: 14982439
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Polyethylenimine-grafted copolymer of poly(l-lysine) and poly(ethylene glycol) for gene delivery.
    Dai J; Zou S; Pei Y; Cheng D; Ai H; Shuai X
    Biomaterials; 2011 Feb; 32(6):1694-705. PubMed ID: 21093048
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gene Expression of Aspect Ratio-Controlled Polyplexes Based on the Effect of Multi-Arm Poly(ethylene glycol).
    Harada A; Nomura K; Yuba E; Kono K
    ACS Biomater Sci Eng; 2019 Nov; 5(11):5681-5687. PubMed ID: 33405699
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Methoxy poly(ethylene glycol)--low molecular weight linear polyethylenimine-derived copolymers enable polyplex shielding.
    Lungwitz U; Breunig M; Liebl R; Blunk T; Goepferich A
    Eur J Pharm Biopharm; 2008 May; 69(1):134-48. PubMed ID: 18042362
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A PEG-b-poly(disulfide-l-lysine) based redox-responsive cationic polymer for efficient gene transfection.
    Ullah I; Zhao J; Rukh S; Muhammad K; Guo J; Ren XK; Xia S; Zhang W; Feng Y
    J Mater Chem B; 2019 Mar; 7(11):1893-1905. PubMed ID: 32255052
    [TBL] [Abstract][Full Text] [Related]  

  • 36. PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery particles.
    Mishra S; Webster P; Davis ME
    Eur J Cell Biol; 2004 Apr; 83(3):97-111. PubMed ID: 15202568
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mixing-sequence-dependent nucleic acid complexation and gene transfer efficiency by polyethylenimine.
    Cho SK; Dang C; Wang X; Ragan R; Kwon YJ
    Biomater Sci; 2015 Jul; 3(7):1124-33. PubMed ID: 26221945
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multilayered polyplexes with the endosomal buffering polycation in the core and the cell uptake-favorable polycation in the outer layer for enhanced gene delivery.
    Ke JH; Young TH
    Biomaterials; 2010 Dec; 31(35):9366-72. PubMed ID: 20864166
    [TBL] [Abstract][Full Text] [Related]  

  • 39. FGFR-targeted gene delivery mediated by supramolecular assembly between β-cyclodextrin-crosslinked PEI and redox-sensitive PEG.
    Ping Y; Hu Q; Tang G; Li J
    Biomaterials; 2013 Sep; 34(27):6482-94. PubMed ID: 23602276
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preparation, characterization and transfection efficiency of cationic PEGylated PLA nanoparticles as gene delivery systems.
    Chen J; Tian B; Yin X; Zhang Y; Hu D; Hu Z; Liu M; Pan Y; Zhao J; Li H; Hou C; Wang J; Zhang Y
    J Biotechnol; 2007 Jun; 130(2):107-13. PubMed ID: 17467097
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.