These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 26222657)

  • 1. Sequence- and Structure-Based Immunoreactive Epitope Discovery for Burkholderia pseudomallei Flagellin.
    Nithichanon A; Rinchai D; Gori A; Lassaux P; Peri C; Conchillio-Solé O; Ferrer-Navarro M; Gourlay LJ; Nardini M; Vila J; Daura X; Colombo G; Bolognesi M; Lertmemonkolchai G
    PLoS Negl Trop Dis; 2015; 9(7):e0003917. PubMed ID: 26222657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of CD4+ T-cell epitope and investigation of HLA distribution for the immunogenic proteins of Burkholderia pseudomallei using in silico approaches - A key vaccine development strategy for melioidosis.
    Swetha RG; Sandhya M; Ramaiah S; Anbarasu A
    J Theor Biol; 2016 Jul; 400():11-8. PubMed ID: 27086038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From crystal structure to in silico epitope discovery in the Burkholderia pseudomallei flagellar hook-associated protein FlgK.
    Gourlay LJ; Thomas RJ; Peri C; Conchillo-Solé O; Ferrer-Navarro M; Nithichanon A; Vila J; Daura X; Lertmemongkolchai G; Titball R; Colombo G; Bolognesi M
    FEBS J; 2015 Apr; 282(7):1319-33. PubMed ID: 25645451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid DNA vaccination against Burkholderia pseudomallei flagellin by tattoo or intranasal application.
    Lankelma JM; Wagemakers A; Birnie E; Haak BW; Trentelman JJA; Weehuizen TAF; Ersöz J; Roelofs JJTH; Hovius JW; Wiersinga WJ; Bins AD
    Virulence; 2017 Nov; 8(8):1683-1694. PubMed ID: 28323523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reverse vaccinology and subtractive genomics-based putative vaccine targets identification for Burkholderia pseudomallei Bp1651.
    Hizbullah ; Nazir Z; Afridi SG; Shah M; Shams S; Khan A
    Microb Pathog; 2018 Dec; 125():219-229. PubMed ID: 30243554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible vs Rigid Epitope Conformations for Diagnostic- and Vaccine-Oriented Applications: Novel Insights from the Burkholderia pseudomallei BPSL2765 Pal3 Epitope.
    Gori A; Peri C; Quilici G; Nithichanon A; Gaudesi D; Longhi R; Gourlay L; Bolognesi M; Lertmemongkolchai G; Musco G; Colombo G
    ACS Infect Dis; 2016 Mar; 2(3):221-30. PubMed ID: 27623032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CD4+ T cell epitopes of FliC conserved between strains of Burkholderia: implications for vaccines against melioidosis and cepacia complex in cystic fibrosis.
    Musson JA; Reynolds CJ; Rinchai D; Nithichanon A; Khaenam P; Favry E; Spink N; Chu KK; De Soyza A; Bancroft GJ; Lertmemongkolchai G; Maillere B; Boyton RJ; Altmann DM; Robinson JH
    J Immunol; 2014 Dec; 193(12):6041-9. PubMed ID: 25392525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flagellin-independent effects of a Toll-like receptor 5 polymorphism in the inflammatory response to Burkholderia pseudomallei.
    Dickey AK; Chantratita N; Tandhavanant S; Ducken D; Lovelace-Macon L; Seal S; Robertson J; Myers ND; Schwarz S; Wurfel MM; Kosamo S; West TE
    PLoS Negl Trop Dis; 2019 May; 13(5):e0007354. PubMed ID: 31067234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subtractive proteomics-guided vaccine targets identification and designing of multi-epitopes vaccine for immune response instigation against Burkholderia pseudomallei.
    Alshabrmi FM; Alatawi EA
    Int J Biol Macromol; 2024 Jun; 270(Pt 1):132105. PubMed ID: 38710251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A structure-based strategy for epitope discovery in Burkholderia pseudomallei OppA antigen.
    Lassaux P; Peri C; Ferrer-Navarro M; Gourlay LJ; Gori A; Conchillo-Solé O; Rinchai D; Lertmemongkolchai G; Longhi R; Daura X; Colombo G; Bolognesi M
    Structure; 2013 Jan; 21(1):167-175. PubMed ID: 23159127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploiting the Burkholderia pseudomallei acute phase antigen BPSL2765 for structure-based epitope discovery/design in structural vaccinology.
    Gourlay LJ; Peri C; Ferrer-Navarro M; Conchillo-Solé O; Gori A; Rinchai D; Thomas RJ; Champion OL; Michell SL; Kewcharoenwong C; Nithichanon A; Lassaux P; Perletti L; Longhi R; Lertmemongkolchai G; Titball RW; Daura X; Colombo G; Bolognesi M
    Chem Biol; 2013 Sep; 20(9):1147-56. PubMed ID: 23993463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Burkholderia pseudomallei proteins presented by monocyte-derived dendritic cells stimulate human memory T cells in vitro.
    Tippayawat P; Pinsiri M; Rinchai D; Riyapa D; Romphruk A; Gan YH; Houghton RL; Felgner PL; Titball RW; Stevens MP; Galyov EE; Bancroft GJ; Lertmemongkolchai G
    Infect Immun; 2011 Jan; 79(1):305-13. PubMed ID: 21041491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-based design of a B cell antigen from B. pseudomallei.
    Gaudesi D; Peri C; Quilici G; Gori A; Ferrer-Navarro M; Conchillo-Solé O; Thomas R; Nithichanon A; Lertmemongkolchai G; Titball R; Daura X; Colombo G; Musco G
    ACS Chem Biol; 2015 Mar; 10(3):803-12. PubMed ID: 25495888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and immunological characterization of Burkholderia pseudomallei O-polysaccharide-flagellin protein conjugates.
    Brett PJ; Woods DE
    Infect Immun; 1996 Jul; 64(7):2824-8. PubMed ID: 8698517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequence polymorphism and PCR-restriction fragment length polymorphism analysis of the flagellin gene of Burkholderia pseudomallei.
    Tay ST; Cheah PC; Puthucheary SD
    J Clin Microbiol; 2010 Apr; 48(4):1465-7. PubMed ID: 20089759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of Burkholderia pseudomallei DsbA substrates identifies potential virulence factors and vaccine targets.
    Vezina B; Petit GA; Martin JL; Halili MA
    PLoS One; 2020; 15(11):e0241306. PubMed ID: 33216758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Boosting of post-exposure human T-cell and B-cell recall responses in vivo by Burkholderia pseudomallei-related proteins.
    Nithichanon A; Gourlay LJ; Bancroft GJ; Ato M; Takahashi Y; Lertmemongkolchai G
    Immunology; 2017 May; 151(1):98-109. PubMed ID: 28066900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exposure to Burkholderia pseudomallei induces cell-mediated immunity in healthy individuals.
    Govan B; Ketheesan N
    Clin Microbiol Infect; 2004 Jun; 10(6):585-7. PubMed ID: 15191392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immune Control of
    Nithichanon A; Rinchai D; Buddhisa S; Saenmuang P; Kewcharoenwong C; Kessler B; Khaenam P; Chetchotisakd P; Maillere B; Robinson J; Reynolds CJ; Boyton RJ; Altmann DM; Lertmemongkolchai G
    Front Immunol; 2018; 9():484. PubMed ID: 29616023
    [No Abstract]   [Full Text] [Related]  

  • 20. T Cell Immunity to the Alkyl Hydroperoxide Reductase of Burkholderia pseudomallei: A Correlate of Disease Outcome in Acute Melioidosis.
    Reynolds C; Goudet A; Jenjaroen K; Sumonwiriya M; Rinchai D; Musson J; Overbeek S; Makinde J; Quigley K; Manji J; Spink N; Yos P; Wuthiekanun V; Bancroft G; Robinson J; Lertmemongkolchai G; Dunachie S; Maillere B; Holden M; Altmann D; Boyton R
    J Immunol; 2015 May; 194(10):4814-24. PubMed ID: 25862821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.