These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 26223017)
1. The real-time estimation of hazardous gas dispersion by the integration of gas detectors, neural network and gas dispersion models. Wang B; Chen B; Zhao J J Hazard Mater; 2015 Dec; 300():433-442. PubMed ID: 26223017 [TBL] [Abstract][Full Text] [Related]
2. Estimation of vulnerable zones due to accidental release of toxic materials resulting in dense gas clouds. Singh MP; Mohan M; Panwar TS; Chopra HV Risk Anal; 1991 Sep; 11(3):425-40. PubMed ID: 1947349 [TBL] [Abstract][Full Text] [Related]
3. Comparison of Machine Learning Models for Hazardous Gas Dispersion Prediction in Field Cases. Wang R; Chen B; Qiu S; Zhu Z; Wang Y; Wang Y; Qiu X Int J Environ Res Public Health; 2018 Jul; 15(7):. PubMed ID: 29996467 [TBL] [Abstract][Full Text] [Related]
5. Modeling an irritant gas plume for epidemiologic study. Jani DD; Reed D; Feigley CE; Svendsen ER Int J Environ Health Res; 2016; 26(1):58-74. PubMed ID: 25772143 [TBL] [Abstract][Full Text] [Related]
6. Contaminant dispersion prediction and source estimation with integrated Gaussian-machine learning network model for point source emission in atmosphere. Ma D; Zhang Z J Hazard Mater; 2016 Jul; 311():237-45. PubMed ID: 27035273 [TBL] [Abstract][Full Text] [Related]
7. An approach for estimating toxic releases of H2S-containing natural gas. Jianwen Z; Da L; Wenxing F J Hazard Mater; 2014 Jan; 264():350-62. PubMed ID: 24316807 [TBL] [Abstract][Full Text] [Related]
8. A method for simulating the release of natural gas from the rupture of high-pressure pipelines in any terrain. Deng Y; Hu H; Yu B; Sun D; Hou L; Liang Y J Hazard Mater; 2018 Jan; 342():418-428. PubMed ID: 28854394 [TBL] [Abstract][Full Text] [Related]
9. Hazardous gas releases in urban areas: assessment of consequences through CFD modelling. Pontiggia M; Derudi M; Alba M; Scaioni M; Rota R J Hazard Mater; 2010 Apr; 176(1-3):589-96. PubMed ID: 20006427 [TBL] [Abstract][Full Text] [Related]
10. Neural network models for biological waste-gas treatment systems. Rene ER; Estefanía López M; Veiga MC; Kennes C N Biotechnol; 2011 Dec; 29(1):56-73. PubMed ID: 21784184 [TBL] [Abstract][Full Text] [Related]
11. Dynamic characteristics of chlorine dispersion process and quantitative risk assessment of pollution hazard. Xin B; Yu J; Dang W; Wan L Environ Sci Pollut Res Int; 2021 Sep; 28(34):46161-46175. PubMed ID: 33415617 [TBL] [Abstract][Full Text] [Related]
12. Atmospheric transport of radioactive debris to Norway in case of a hypothetical accident related to the recovery of the Russian submarine K-27. Bartnicki J; Amundsen I; Brown J; Hosseini A; Hov Ø; Haakenstad H; Klein H; Lind OC; Salbu B; Szacinski Wendel CC; Ytre-Eide MA J Environ Radioact; 2016 Jan; 151 Pt 2():404-16. PubMed ID: 25804322 [TBL] [Abstract][Full Text] [Related]
13. Development of the Quantitative Property-Consequence Relationship Model for Prediction of Hydrogen Leakage and Dispersion Using Response Surface Method and Artificial Neural Network Approaches. Lee J; Oh S; Baek S; Chung C; Ma B ACS Omega; 2024 Oct; 9(39):40857-40869. PubMed ID: 39372002 [TBL] [Abstract][Full Text] [Related]
14. A risk-based approach to flammable gas detector spacing. Defriend S; Dejmek M; Porter L; Deshotels B; Natvig B J Hazard Mater; 2008 Nov; 159(1):142-51. PubMed ID: 18023974 [TBL] [Abstract][Full Text] [Related]
15. A review of numerical models to predict the atmospheric dispersion of radionuclides. Leelőssy Á; Lagzi I; Kovács A; Mészáros R J Environ Radioact; 2018 Feb; 182():20-33. PubMed ID: 29179047 [TBL] [Abstract][Full Text] [Related]
16. Overview of the Brooklyn traffic real-time ambient pollutant penetration and environmental dispersion (B-TRAPPED) study: theoretical background and model for design of field experiments. Hahn I; Wiener RW; Richmond-Bryant J; Brixey LA; Henkle SW J Environ Monit; 2009 Dec; 11(12):2115-21. PubMed ID: 20024008 [TBL] [Abstract][Full Text] [Related]
17. Analysis of underwater gas release and dispersion behavior to assess subsea safety risk. Li X; Chen G; Khan F J Hazard Mater; 2019 Apr; 367():676-685. PubMed ID: 30654285 [TBL] [Abstract][Full Text] [Related]
18. Combination of artificial neural-network forecasters for prediction of natural gas consumption. Khotanzad A; Elragal H; Lu TL IEEE Trans Neural Netw; 2000; 11(2):464-73. PubMed ID: 18249775 [TBL] [Abstract][Full Text] [Related]