These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 26223206)
1. Evolution of cytoarchitectural landscapes in the mammalian isocortex: Sirenians (Trichechus manatus) in comparison with other mammals. Charvet CJ; Reep RL; Finlay BL J Comp Neurol; 2016 Mar; 524(4):772-82. PubMed ID: 26223206 [TBL] [Abstract][Full Text] [Related]
2. Gradients in cytoarchitectural landscapes of the isocortex: Diprotodont marsupials in comparison to eutherian mammals. Charvet CJ; Stimpson CD; Kim YD; Raghanti MA; Lewandowski AH; Hof PR; Gómez-Robles A; Krienen FM; Sherwood CC J Comp Neurol; 2017 Jun; 525(8):1811-1826. PubMed ID: 28001295 [TBL] [Abstract][Full Text] [Related]
3. Neuron Types in the Presumptive Primary Somatosensory Cortex of the Florida Manatee (Trichechus manatus latirostris). Reyes LD; Stimpson CD; Gupta K; Raghanti MA; Hof PR; Reep RL; Sherwood CC Brain Behav Evol; 2015; 86(3-4):210-31. PubMed ID: 26613530 [TBL] [Abstract][Full Text] [Related]
4. Manatee cerebral cortex: cytoarchitecture of the caudal region in Trichechus manatus latirostris. Marshall CD; Reep RL Brain Behav Evol; 1995; 45(1):1-18. PubMed ID: 7866767 [TBL] [Abstract][Full Text] [Related]
5. Golgi Analysis of Neuron Morphology in the Presumptive Somatosensory Cortex and Visual Cortex of the Florida Manatee (Trichechus manatus latirostris). Reyes LD; Harland T; Reep RL; Sherwood CC; Jacobs B Brain Behav Evol; 2016; 87(2):105-16. PubMed ID: 27166161 [TBL] [Abstract][Full Text] [Related]
6. Evo-devo and the primate isocortex: the central organizing role of intrinsic gradients of neurogenesis. Charvet CJ; Finlay BL Brain Behav Evol; 2014; 84(2):81-92. PubMed ID: 25247448 [TBL] [Abstract][Full Text] [Related]
7. Systematic, cross-cortex variation in neuron numbers in rodents and primates. Charvet CJ; Cahalane DJ; Finlay BL Cereb Cortex; 2015 Jan; 25(1):147-60. PubMed ID: 23960207 [TBL] [Abstract][Full Text] [Related]
8. Distinct developmental growth patterns account for the disproportionate expansion of the rostral and caudal isocortex in evolution. Charvet CJ Front Hum Neurosci; 2014; 8():190. PubMed ID: 24782736 [TBL] [Abstract][Full Text] [Related]
9. Manatee cerebral cortex: cytoarchitecture of the frontal region in Trichechus manatus latirostris. Reep RL; Johnson JI; Switzer RC; Welker WI Brain Behav Evol; 1989; 34(6):365-86. PubMed ID: 2611642 [TBL] [Abstract][Full Text] [Related]
10. Phylogenetic variation in cortical layer II immature neuron reservoir of mammals. La Rosa C; Cavallo F; Pecora A; Chincarini M; Ala U; Faulkes CG; Nacher J; Cozzi B; Sherwood CC; Amrein I; Bonfanti L Elife; 2020 Jul; 9():. PubMed ID: 32690132 [TBL] [Abstract][Full Text] [Related]
11. Vertebral anatomy in the Florida manatee, Trichechus manatus latirostris: a developmental and evolutionary analysis. Buchholtz EA; Booth AC; Webbink KE Anat Rec (Hoboken); 2007 Jun; 290(6):624-37. PubMed ID: 17516429 [TBL] [Abstract][Full Text] [Related]
12. Combining diffusion magnetic resonance tractography with stereology highlights increased cross-cortical integration in primates. Charvet CJ; Hof PR; Raghanti MA; Van Der Kouwe AJ; Sherwood CC; Takahashi E J Comp Neurol; 2017 Apr; 525(5):1075-1093. PubMed ID: 27615357 [TBL] [Abstract][Full Text] [Related]
13. Neocortical neurogenesis is not really "neo": a new evolutionary model derived from a comparative study of chick pallial development. Suzuki IK; Hirata T Dev Growth Differ; 2013 Jan; 55(1):173-87. PubMed ID: 23230908 [TBL] [Abstract][Full Text] [Related]
14. Topographical organization of the facial motor nucleus in Florida manatees (Trichechus manatus latirostris). Marshall CD; Vaughn SD; Sarko DK; Reep RL Brain Behav Evol; 2007; 70(3):164-73. PubMed ID: 17595536 [TBL] [Abstract][Full Text] [Related]
15. Comparative anatomy of the ciliary body of the West Indian manatee (Trichechus manatus) and selected species. Natiello M; Lewis P; Samuelson D Vet Ophthalmol; 2005; 8(6):375-85. PubMed ID: 16359360 [TBL] [Abstract][Full Text] [Related]
16. Modeling local and cross-species neuron number variations in the cerebral cortex as arising from a common mechanism. Cahalane DJ; Charvet CJ; Finlay BL Proc Natl Acad Sci U S A; 2014 Dec; 111(49):17642-7. PubMed ID: 25422426 [TBL] [Abstract][Full Text] [Related]
17. Not all brains are made the same: new views on brain scaling in evolution. Herculano-Houzel S Brain Behav Evol; 2011; 78(1):22-36. PubMed ID: 21691045 [TBL] [Abstract][Full Text] [Related]
18. Primate neocortex development and evolution: Conserved versus evolved folding. Namba T; Vaid S; Huttner WB J Comp Neurol; 2019 Jul; 527(10):1621-1632. PubMed ID: 30552689 [TBL] [Abstract][Full Text] [Related]
19. [The evolution of the structure of the neocortex in mammals: a new theory of cytoarchitecture]. Marín Padilla M Rev Neurol; 2001 Nov 1-15; 33(9):843-53. PubMed ID: 11784988 [TBL] [Abstract][Full Text] [Related]
20. Developmental duration as an organizer of the evolving mammalian brain: scaling, adaptations, and exceptions. Finlay BL; Huang K Evol Dev; 2020 Jan; 22(1-2):181-195. PubMed ID: 31794147 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]