BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 26223218)

  • 21. Dissipation kinetics and risk assessment of chlorfenapyr on tomato and cabbage.
    Patra S; Ganguly P; Barik SR; Samanta A
    Environ Monit Assess; 2018 Jan; 190(2):71. PubMed ID: 29318380
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pyrimethanil residue and dissipation in tomatoes and soil under field conditions.
    Liu C; Lu D; Wang Y; Wan K; Huang J; Wang F
    Environ Monit Assess; 2013 Nov; 185(11):9397-402. PubMed ID: 24081744
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dissipation of penconazole in tomatoes and soil.
    Abd-Alrahman SH; Ahmed NS
    Bull Environ Contam Toxicol; 2012 Oct; 89(4):873-6. PubMed ID: 22878863
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Residue analysis and dissipation of a new fungicide 2-allylphenol in tomato.
    Hu JY; Zhang WJ; Li JZ
    J Environ Sci (China); 2005; 17(3):491-3. PubMed ID: 16083132
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Estimation of etofenprox residues in tomato fruits by QuEChERS methodology and HPLC-DAD.
    Malhat F; Abdallah H; Nasr I
    Bull Environ Contam Toxicol; 2012 Jun; 88(6):891-3. PubMed ID: 22476259
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Residues and dissipation of trifloxystrobin and its metabolite in tomatoes and soil.
    Wang L; Li W; Li P; Li M; Chen S; Han L
    Environ Monit Assess; 2014 Nov; 186(11):7793-9. PubMed ID: 25086714
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dissipation kinetics and risk assessment of iprovalicarb + propineb fungicide in tomato under different agroclimates.
    Tripathy V; Sharma KK; George T; Patil CS; Saindane YS; Mohapatra S; Siddamallaiah L; Pathan ARK; Yadav AK; Sharma K; Yadav R; Gupta R; Walia S
    Environ Sci Pollut Res Int; 2021 Jun; 28(24):31909-31919. PubMed ID: 33616825
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Persistence and effect of processing on chlorpyriphos residues in tomato (Lycopersicon esculantum Mill.).
    Rani M; Saini S; Kumari B
    Ecotoxicol Environ Saf; 2013 Sep; 95():247-52. PubMed ID: 23764237
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of the residue persistence of trifloxystrobin (25%) + tebuconazole (50%) on gherkin and soil at two locations.
    Mohapatra S
    Environ Monit Assess; 2015 Dec; 187(12):769. PubMed ID: 26603299
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Safety assessment of chromafenozide residue level with decline study on tomato in Egypt.
    Abdelraheem E; Arief M; Mohammad SG; Jiang W
    Environ Monit Assess; 2017 Apr; 189(4):180. PubMed ID: 28342049
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dissipation pattern and dietary risk assessment of some commonly used insecticides on tomato (Solanum lycopersicum L.).
    Singh S; Dubey JK; Katna S; Sharma A; Devi N; Brar GS; Singh G; Gautam H; Thakur N
    Biomed Chromatogr; 2022 Jul; 36(7):e5372. PubMed ID: 35304759
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Persistence and dissipation kinetics of tebuconazole in apple, tomato, chilli and onion crops of Himachal Pradesh, India.
    Dubey JK; Patyal SK; Katna S; Shandil D; Devi N; Singh G; Singh G
    Environ Sci Pollut Res Int; 2020 Apr; 27(10):11290-11302. PubMed ID: 31965494
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improved analysis of propamocarb and cymoxanil for the investigation of residue behavior in two vegetables with different cultivation conditions.
    Chen X; Wang W; Liu F; Bian Y
    J Sci Food Agric; 2020 May; 100(7):3157-3163. PubMed ID: 32096228
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The decline and residues of hexaconazole in tomato and soil.
    Liang H; Li L; Li W; Wu Y; Liu F
    Environ Monit Assess; 2012 Mar; 184(3):1573-9. PubMed ID: 21533586
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Determination of some pesticide residues in conventional-grown and IPM-grown tomato by using QuEChERS method.
    Polat B; Tiryaki O
    J Environ Sci Health B; 2019; 54(2):112-117. PubMed ID: 30602326
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Determination of imidacloprid and its relevant metabolites in tomato using modified QuEChERS combined with ultrahigh-pressure liquid chromatography/Orbitrap tandem mass spectrometry.
    Li J; Jiang Y; Li D
    J Sci Food Agric; 2019 Aug; 99(11):5211-5218. PubMed ID: 31038219
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Magnitude of cyantraniliprole residues in tomato following open field application: pre-harvest interval determination and risk assessment.
    Malhat F; Kasiotis KM; Shalaby S
    Environ Monit Assess; 2018 Feb; 190(3):116. PubMed ID: 29404776
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Persistence and dissipation kinetics of novaluron 9.45% + lambda-cyhalothrin 1.9% ZC insecticides in tomato crop under semi-arid region.
    Pathan ARK; Jakhar BL; Dhaka SR; Nitharwal M; Jatav HS; Dudwal RG; Yadav AK; Choudhary SK; Gauttam V; Rajput VD; Minkina T
    Environ Geochem Health; 2023 Dec; 45(12):9293-9302. PubMed ID: 36645625
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dissipation and decontamination of bifenthrin residues in tomato (Lycopersicon esculentum Mill).
    Chauhan R; Monga S; Kumari B
    Bull Environ Contam Toxicol; 2012 Jul; 89(1):181-6. PubMed ID: 22531839
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dissipation pattern of tetraniliprole in/on green chilies.
    B V; S S M; S P; G A; V M; P K
    J Environ Sci Health B; 2024; 59(7):361-367. PubMed ID: 38774990
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.