These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 26223318)
1. Selective cancer-killing ability of metal-based nanoparticles: implications for cancer therapy. Akhtar MJ; Alhadlaq HA; Kumar S; Alrokayan SA; Ahamed M Arch Toxicol; 2015 Nov; 89(11):1895-907. PubMed ID: 26223318 [TBL] [Abstract][Full Text] [Related]
2. Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. Li Y; Zhang W; Niu J; Chen Y ACS Nano; 2012 Jun; 6(6):5164-73. PubMed ID: 22587225 [TBL] [Abstract][Full Text] [Related]
3. Cobalt oxide nanoparticles induced oxidative stress linked to activation of TNF-α/caspase-8/p38-MAPK signaling in human leukemia cells. Chattopadhyay S; Dash SK; Tripathy S; Das B; Kar Mahapatra S; Pramanik P; Roy S J Appl Toxicol; 2015 Jun; 35(6):603-13. PubMed ID: 25639670 [TBL] [Abstract][Full Text] [Related]
4. Redox interactions and genotoxicity of metal-based nanoparticles: A comprehensive review. Mortezaee K; Najafi M; Samadian H; Barabadi H; Azarnezhad A; Ahmadi A Chem Biol Interact; 2019 Oct; 312():108814. PubMed ID: 31509734 [TBL] [Abstract][Full Text] [Related]
5. Nickel oxide nanoparticles induce cytotoxicity, oxidative stress and apoptosis in cultured human cells that is abrogated by the dietary antioxidant curcumin. Siddiqui MA; Ahamed M; Ahmad J; Majeed Khan MA; Musarrat J; Al-Khedhairy AA; Alrokayan SA Food Chem Toxicol; 2012 Mar; 50(3-4):641-7. PubMed ID: 22273695 [TBL] [Abstract][Full Text] [Related]
6. Oxi-Redox Selective Breast Cancer Treatment: An In Vitro Study of Theranostic In-Based Oxide Nanoparticles for Controlled Generation or Prevention of Oxidative Stress. Hsu NS; Tehei M; Hossain MS; Rosenfeld A; Shiddiky MJA; Sluyter R; Dou SX; Yamauchi Y; Konstantinov K ACS Appl Mater Interfaces; 2021 Jan; 13(2):2204-2217. PubMed ID: 33399455 [TBL] [Abstract][Full Text] [Related]
7. Reactive oxygen species in redox cancer therapy. Tong L; Chuang CC; Wu S; Zuo L Cancer Lett; 2015 Oct; 367(1):18-25. PubMed ID: 26187782 [TBL] [Abstract][Full Text] [Related]
8. Fast intracellular dissolution and persistent cellular uptake of silver nanoparticles in CHO-K1 cells: implication for cytotoxicity. Jiang X; Miclăuş T; Wang L; Foldbjerg R; Sutherland DS; Autrup H; Chen C; Beer C Nanotoxicology; 2015 Mar; 9(2):181-9. PubMed ID: 24738617 [TBL] [Abstract][Full Text] [Related]
9. Molybdenum nanoparticles-induced cytotoxicity, oxidative stress, G2/M arrest, and DNA damage in mouse skin fibroblast cells (L929). Siddiqui MA; Saquib Q; Ahamed M; Farshori NN; Ahmad J; Wahab R; Khan ST; Alhadlaq HA; Musarrat J; Al-Khedhairy AA; Pant AB Colloids Surf B Biointerfaces; 2015 Jan; 125():73-81. PubMed ID: 25437066 [TBL] [Abstract][Full Text] [Related]
10. Reactive oxygen species and cancer paradox: To promote or to suppress? Galadari S; Rahman A; Pallichankandy S; Thayyullathil F Free Radic Biol Med; 2017 Mar; 104():144-164. PubMed ID: 28088622 [TBL] [Abstract][Full Text] [Related]
11. Peroxidase-like activity of Fe3O4@carbon nanoparticles enhances ascorbic acid-induced oxidative stress and selective damage to PC-3 prostate cancer cells. An Q; Sun C; Li D; Xu K; Guo J; Wang C ACS Appl Mater Interfaces; 2013 Dec; 5(24):13248-57. PubMed ID: 24199694 [TBL] [Abstract][Full Text] [Related]
13. Induction of apoptosis in cancer cells at low silver nanoparticle concentrations using chitosan nanocarrier. Sanpui P; Chattopadhyay A; Ghosh SS ACS Appl Mater Interfaces; 2011 Feb; 3(2):218-28. PubMed ID: 21280584 [TBL] [Abstract][Full Text] [Related]
14. Zinc sulfide nanoparticles selectively induce cytotoxic and genotoxic effects on leukemic cells: involvement of reactive oxygen species and tumor necrosis factor alpha. Dash SK; Ghosh T; Roy S; Chattopadhyay S; Das D J Appl Toxicol; 2014 Nov; 34(11):1130-44. PubMed ID: 24477783 [TBL] [Abstract][Full Text] [Related]
15. Nickel oxide nanoparticles exert cytotoxicity via oxidative stress and induce apoptotic response in human liver cells (HepG2). Ahamed M; Ali D; Alhadlaq HA; Akhtar MJ Chemosphere; 2013 Nov; 93(10):2514-22. PubMed ID: 24139157 [TBL] [Abstract][Full Text] [Related]
16. Toxicity of cobalt oxide nanoparticles to normal cells; an in vitro and in vivo study. Chattopadhyay S; Dash SK; Tripathy S; Das B; Mandal D; Pramanik P; Roy S Chem Biol Interact; 2015 Jan; 226():58-71. PubMed ID: 25437709 [TBL] [Abstract][Full Text] [Related]
17. Cadmium-based quantum dot induced autophagy formation for cell survival via oxidative stress. Luo YH; Wu SB; Wei YH; Chen YC; Tsai MH; Ho CC; Lin SY; Yang CS; Lin P Chem Res Toxicol; 2013 May; 26(5):662-73. PubMed ID: 23617821 [TBL] [Abstract][Full Text] [Related]
18. pH-Sensitive Polymeric Nanoparticles with Gold(I) Compound Payloads Synergistically Induce Cancer Cell Death through Modulation of Autophagy. Lin YX; Gao YJ; Wang Y; Qiao ZY; Fan G; Qiao SL; Zhang RX; Wang L; Wang H Mol Pharm; 2015 Aug; 12(8):2869-78. PubMed ID: 26101892 [TBL] [Abstract][Full Text] [Related]
19. Recovery of redox homeostasis altered by CuNPs in H4IIE liver cells does not reduce the cytotoxic effects of these NPs: an investigation using aryl hydrocarbon receptor (AhR) dependent antioxidant activity. Connolly M; Fernández-Cruz ML; Navas JM Chem Biol Interact; 2015 Feb; 228():57-68. PubMed ID: 25617484 [TBL] [Abstract][Full Text] [Related]
20. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Valko M; Rhodes CJ; Moncol J; Izakovic M; Mazur M Chem Biol Interact; 2006 Mar; 160(1):1-40. PubMed ID: 16430879 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]