BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 26223446)

  • 1. Evaluating whole transcriptome amplification for gene profiling experiments using RNA-Seq.
    Faherty SL; Campbell CR; Larsen PA; Yoder AD
    BMC Biotechnol; 2015 Jul; 15():65. PubMed ID: 26223446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison between NuGEN's WT-Ovation Pico and one-direct amplification systems.
    Morse AM; Carballo V; Baldwin DA; Taylor CG; McIntyre LM
    J Biomol Tech; 2010 Sep; 21(3):141-7. PubMed ID: 20808643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive evaluation of AmpliSeq transcriptome, a novel targeted whole transcriptome RNA sequencing methodology for global gene expression analysis.
    Li W; Turner A; Aggarwal P; Matter A; Storvick E; Arnett DK; Broeckel U
    BMC Genomics; 2015 Dec; 16():1069. PubMed ID: 26673413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of CAGE and RNA-seq transcriptome profiling using clonally amplified and single-molecule next-generation sequencing.
    Kawaji H; Lizio M; Itoh M; Kanamori-Katayama M; Kaiho A; Nishiyori-Sueki H; Shin JW; Kojima-Ishiyama M; Kawano M; Murata M; Ninomiya-Fukuda N; Ishikawa-Kato S; Nagao-Sato S; Noma S; Hayashizaki Y; Forrest AR; Carninci P;
    Genome Res; 2014 Apr; 24(4):708-17. PubMed ID: 24676093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of microarrays and RNA-seq for gene expression analyses of dose-response experiments.
    Black MB; Parks BB; Pluta L; Chu TM; Allen BC; Wolfinger RD; Thomas RS
    Toxicol Sci; 2014 Feb; 137(2):385-403. PubMed ID: 24194394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fidelity and representativeness of two isothermal multiple displacement amplification systems to preamplify limiting amounts of total RNA.
    Gadkar VJ; Arseneault T; Filion M
    Mol Biotechnol; 2014 Apr; 56(4):377-85. PubMed ID: 24198216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of stranded and non-stranded RNA-seq transcriptome profiling and investigation of gene overlap.
    Zhao S; Zhang Y; Gordon W; Quan J; Xi H; Du S; von Schack D; Zhang B
    BMC Genomics; 2015 Sep; 16(1):675. PubMed ID: 26334759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNA Amplification Protocol Leads to Biased Polymerase Chain Reaction Results Especially for Low-Copy Transcripts of Human Bone Marrow-Derived Stromal Cells.
    Coenen C; Liedtke S; Kogler G
    PLoS One; 2015; 10(10):e0141070. PubMed ID: 26485654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative analysis of RNA sequencing methods for degraded or low-input samples.
    Adiconis X; Borges-Rivera D; Satija R; DeLuca DS; Busby MA; Berlin AM; Sivachenko A; Thompson DA; Wysoker A; Fennell T; Gnirke A; Pochet N; Regev A; Levin JZ
    Nat Methods; 2013 Jul; 10(7):623-9. PubMed ID: 23685885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single read and paired end mRNA-Seq Illumina libraries from 10 nanograms total RNA.
    Sengupta S; Bolin JM; Ruotti V; Nguyen BK; Thomson JA; Elwell AL; Stewart R
    J Vis Exp; 2011 Oct; (56):e3340. PubMed ID: 22064688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How to analyze gene expression using RNA-sequencing data.
    Ramsköld D; Kavak E; Sandberg R
    Methods Mol Biol; 2012; 802():259-74. PubMed ID: 22130886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA-seq Sample Preparation Kits Strongly Affect Transcriptome Profiles of a Gas-Fermenting Bacterium.
    de Lima LA; Reinmets K; Nielsen LK; Marcellin E; Harris A; Köpke M; Valgepea K
    Microbiol Spectr; 2022 Aug; 10(4):e0230322. PubMed ID: 35894617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient extraction of small and large RNAs in bacteria for excellent total RNA sequencing and comprehensive transcriptome analysis.
    Heera R; Sivachandran P; Chinni SV; Mason J; Croft L; Ravichandran M; Yin LS
    BMC Res Notes; 2015 Dec; 8():754. PubMed ID: 26645211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enriching and Characterizing T Cell Repertoires from 3' Barcoded Single-Cell Whole Transcriptome Amplification Products.
    Jivanjee T; Ibrahim S; Nyquist SK; Gatter GJ; Bromley JD; Jaiswal S; Berger B; Behar SM; Love JC; Shalek AK
    Methods Mol Biol; 2022; 2574():159-182. PubMed ID: 36087201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Whole transcriptome analysis with sequencing: methods, challenges and potential solutions.
    Jiang Z; Zhou X; Li R; Michal JJ; Zhang S; Dodson MV; Zhang Z; Harland RM
    Cell Mol Life Sci; 2015 Sep; 72(18):3425-39. PubMed ID: 26018601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptomics in the RNA-seq era.
    McGettigan PA
    Curr Opin Chem Biol; 2013 Feb; 17(1):4-11. PubMed ID: 23290152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zinc-mediated RNA fragmentation allows robust transcript reassembly upon whole transcriptome RNA-Seq.
    Wery M; Descrimes M; Thermes C; Gautheret D; Morillon A
    Methods; 2013 Sep; 63(1):25-31. PubMed ID: 23523657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptome analysis using next-generation sequencing.
    Mutz KO; Heilkenbrinker A; Lönne M; Walter JG; Stahl F
    Curr Opin Biotechnol; 2013 Feb; 24(1):22-30. PubMed ID: 23020966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FDM: a graph-based statistical method to detect differential transcription using RNA-seq data.
    Singh D; Orellana CF; Hu Y; Jones CD; Liu Y; Chiang DY; Liu J; Prins JF
    Bioinformatics; 2011 Oct; 27(19):2633-40. PubMed ID: 21824971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA-Seq: a method for comprehensive transcriptome analysis.
    Nagalakshmi U; Waern K; Snyder M
    Curr Protoc Mol Biol; 2010 Jan; Chapter 4():Unit 4.11.1-13. PubMed ID: 20069539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.