BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 26223572)

  • 1. Size-selective yolk-shell nanoreactors with nanometer-thin porous polymer shells.
    Jia Y; Shmakov SN; Register P; Pinkhassik E
    Chemistry; 2015 Sep; 21(36):12709-14. PubMed ID: 26223572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Encapsulation of Homogeneous Catalysts in Porous Polymer Nanocapsules Produces Fast-Acting Selective Nanoreactors.
    Dergunov SA; Khabiyev AT; Shmakov SN; Kim MD; Ehterami N; Weiss MC; Birman VB; Pinkhassik E
    ACS Nano; 2016 Dec; 10(12):11397-11406. PubMed ID: 28024370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Building Functional Nanodevices with Vesicle-Templated Porous Polymer Nanocapsules.
    Dergunov SA; Kim MD; Shmakov SN; Pinkhassik E
    Acc Chem Res; 2019 Jan; 52(1):189-198. PubMed ID: 30561994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled Permeability in Porous Polymer Nanocapsules Enabling Size- and Charge-Selective SERS Nanoprobes.
    Jia Y; Shmakov SN; Pinkhassik E
    ACS Appl Mater Interfaces; 2016 Aug; 8(30):19755-63. PubMed ID: 27186787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of Efficient Hydrogenation Nanoreactors by Modifying the Freedom of Ultrasmall Platinum Nanoparticles within Yolk-Shell Nanospheres.
    Peng J; Lan G; Guo M; Wei X; Li C; Yang Q
    Chemistry; 2015 Jul; 21(29):10490-6. PubMed ID: 26094810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porous-Carbon-Confined Formation of Monodisperse Iron Nanoparticle Yolks toward Versatile Nanoreactors for Metal Extraction.
    Wang Q; Luo W; Chen X; Fan J; Jiang W; Wang L; Jiang W; Zhang WX; Yang J
    Chemistry; 2018 Oct; 24(58):15663-15668. PubMed ID: 30113103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Yolk-shell nanocrystal@ZIF-8 nanostructures for gas-phase heterogeneous catalysis with selectivity control.
    Kuo CH; Tang Y; Chou LY; Sneed BT; Brodsky CN; Zhao Z; Tsung CK
    J Am Chem Soc; 2012 Sep; 134(35):14345-8. PubMed ID: 22901021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A yolk-shell nanoreactor with a basic core and an acidic shell for cascade reactions.
    Yang Y; Liu X; Li X; Zhao J; Bai S; Liu J; Yang Q
    Angew Chem Int Ed Engl; 2012 Sep; 51(36):9164-8. PubMed ID: 22865743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Well-Defined Metal Nanoparticles@Covalent Organic Framework Yolk-Shell Nanocages by ZIF-8 Template as Catalytic Nanoreactors.
    Cui K; Zhong W; Li L; Zhuang Z; Li L; Bi J; Yu Y
    Small; 2019 Jan; 15(3):e1804419. PubMed ID: 30548927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlled synthesis of monodisperse SiO(2)--TiO(2) microspheres with a yolk-shell structure as effective photocatalysts.
    Yoo JB; Yoo HJ; Lim BW; Lee KH; Kim MH; Kang D; Hur NH
    ChemSusChem; 2012 Dec; 5(12):2334-40. PubMed ID: 23132768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Core-shell nanostructured catalysts.
    Zhang Q; Lee I; Joo JB; Zaera F; Yin Y
    Acc Chem Res; 2013 Aug; 46(8):1816-24. PubMed ID: 23268644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tailored core-shell-shell nanostructures: sandwiching gold nanoparticles between silica cores and tunable silica shells.
    Shi YL; Asefa T
    Langmuir; 2007 Aug; 23(18):9455-62. PubMed ID: 17661498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Yolk-shell gold nanoparticles as model materials for support-effect studies in heterogeneous catalysis: Au, @C and Au, @ZrO2 for CO oxidation as an example.
    Galeano C; Güttel R; Paul M; Arnal P; Lu AH; Schüth F
    Chemistry; 2011 Jul; 17(30):8434-9. PubMed ID: 21656585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The fabrication of hollow ZrO
    Yang F; Wu C; Yu H; Wang S; Li T; Yan B; Yin H
    Nanoscale; 2021 Apr; 13(14):6856-6862. PubMed ID: 33885486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Yolk-shell Fe(0)@SiO2 nanoparticles as nanoreactors for fenton-like catalytic reaction.
    Liu C; Li J; Qi J; Wang J; Luo R; Shen J; Sun X; Han W; Wang L
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):13167-73. PubMed ID: 25050829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of Magnetic Tubular Nanoreactors for Highly Efficient Catalysis.
    Yang S; Peng L; Cao C; Wei F; Liu J; Zhu YN; Liu C; Wang X; Song W
    Chem Asian J; 2016 Oct; 11(19):2797-2801. PubMed ID: 27123561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Megranate-like nanoreactor with multiple cores and an acidic mesoporous shell for a cascade reaction.
    Wang X; Guan B; He Y; An D; Zhang Y; Cao Y; Li X; Liu Y; Huo Q
    Nanoscale; 2015 Feb; 7(8):3719-25. PubMed ID: 25640736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering of Yolk/Core-Shell Structured Nanoreactors for Thermal Hydrogenations.
    Ye RP; Wang X; Price CH; Liu X; Yang Q; Jaroniec M; Liu J
    Small; 2021 Mar; 17(9):e1906250. PubMed ID: 32406190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multifunctional nanocomposites constructed from Fe3O4-Au nanoparticle cores and a porous silica shell in the solution phase.
    Chen F; Chen Q; Fang S; Sun Y; Chen Z; Xie G; Du Y
    Dalton Trans; 2011 Nov; 40(41):10857-64. PubMed ID: 21637876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hollow and Yolk-Shell Co-N-C@SiO
    Lan X; Ali B; Wang Y; Wang T
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):3624-3630. PubMed ID: 31865695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.