These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 26223817)

  • 1. Controlled release of an anthrax toxin-neutralizing antibody from hydrolytically degradable polyethylene glycol hydrogels.
    Liang Y; Coffin MV; Manceva SD; Chichester JA; Jones RM; Kiick KL
    J Biomed Mater Res A; 2016 Jan; 104(1):113-23. PubMed ID: 26223817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel degradable poly(ethylene glycol) hydrogels for controlled release of protein.
    Zhao X; Harris JM
    J Pharm Sci; 1998 Nov; 87(11):1450-8. PubMed ID: 9811505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cleavable carbamate linkers for controlled protein delivery from hydrogels.
    Hammer N; Brandl FP; Kirchhof S; Goepferich AM
    J Control Release; 2014 Jun; 183():67-76. PubMed ID: 24680687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradable poly(ethylene glycol) (PEG)-based hydrogels for spatiotemporal control of siRNA/nanoparticle delivery.
    Wang Y; Zhang S; Benoit DSW
    J Control Release; 2018 Oct; 287():58-66. PubMed ID: 30077736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sustained release of multicomponent platelet-rich plasma proteins from hydrolytically degradable PEG hydrogels.
    Jain E; Sheth S; Dunn A; Zustiak SP; Sell SA
    J Biomed Mater Res A; 2017 Dec; 105(12):3304-3314. PubMed ID: 28865187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of protein release from hydrolytically degradable poly(ethylene glycol) hydrogels.
    Zustiak SP; Leach JB
    Biotechnol Bioeng; 2011 Jan; 108(1):197-206. PubMed ID: 20803477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyethylene glycol (PEG)-Poly(N-isopropylacrylamide) (PNIPAAm) based thermosensitive injectable hydrogels for biomedical applications.
    Alexander A; Ajazuddin ; Khan J; Saraf S; Saraf S
    Eur J Pharm Biopharm; 2014 Nov; 88(3):575-85. PubMed ID: 25092423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release.
    Bhattarai N; Ramay HR; Gunn J; Matsen FA; Zhang M
    J Control Release; 2005 Apr; 103(3):609-24. PubMed ID: 15820408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-arm PEG/silica hydrogel for sustained ocular drug delivery.
    Lu C; Zahedi P; Forman A; Allen C
    J Pharm Sci; 2014 Jan; 103(1):216-26. PubMed ID: 24285503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Poly(ethylene glycol) (PEG)-lactic acid nanocarrier-based degradable hydrogels for restoring the vaginal microenvironment.
    Sundara Rajan S; Turovskiy Y; Singh Y; Chikindas ML; Sinko PJ
    J Control Release; 2014 Nov; 194():301-9. PubMed ID: 25223229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrolytically degradable poly(ethylene glycol) hydrogel scaffolds with tunable degradation and mechanical properties.
    Zustiak SP; Leach JB
    Biomacromolecules; 2010 May; 11(5):1348-57. PubMed ID: 20355705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-Term Controlled Protein Release from Poly(Ethylene Glycol) Hydrogels by Modulating Mesh Size and Degradation.
    Tong X; Lee S; Bararpour L; Yang F
    Macromol Biosci; 2015 Dec; 15(12):1679-86. PubMed ID: 26259711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Poly(ethylene glycol) hydrogels formed by conjugate addition with controllable swelling, degradation, and release of pharmaceutically active proteins.
    van de Wetering P; Metters AT; Schoenmakers RG; Hubbell JA
    J Control Release; 2005 Feb; 102(3):619-27. PubMed ID: 15681084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ covalently cross-linked PEG hydrogel for ocular drug delivery applications.
    Yu J; Xu X; Yao F; Luo Z; Jin L; Xie B; Shi S; Ma H; Li X; Chen H
    Int J Pharm; 2014 Aug; 470(1-2):151-7. PubMed ID: 24768405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled release of tethered molecules via engineered hydrogel degradation: model development and validation.
    DuBose JW; Cutshall C; Metters AT
    J Biomed Mater Res A; 2005 Jul; 74(1):104-16. PubMed ID: 15940664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro and in vivo protein delivery from in situ forming poly(ethylene glycol)-poly(lactide) hydrogels.
    Hiemstra C; Zhong Z; Van Tomme SR; van Steenbergen MJ; Jacobs JJ; Otter WD; Hennink WE; Feijen J
    J Control Release; 2007 Jun; 119(3):320-7. PubMed ID: 17475360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human monoclonal antibodies that neutralize anthrax toxin by inhibiting heptamer assembly.
    Wang F; Ruther P; Jiang I; Sawada-Hirai R; Sun SM; Nedellec R; Morrow PR; Kang AS
    Hum Antibodies; 2004; 13(4):105-10. PubMed ID: 15671576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyethlyene glycol microgels to deliver bioactive nerve growth factor.
    Stukel J; Thompson S; Simon L; Willits R
    J Biomed Mater Res A; 2015 Feb; 103(2):604-13. PubMed ID: 24771712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Migration of marrow stromal cells in response to sustained release of stromal-derived factor-1alpha from poly(lactide ethylene oxide fumarate) hydrogels.
    He X; Ma J; Jabbari E
    Int J Pharm; 2010 May; 390(2):107-16. PubMed ID: 20219655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anthrax toxin-neutralizing antibody reconfigures the protective antigen heptamer into a supercomplex.
    Radjainia M; Hyun JK; Leysath CE; Leppla SH; Mitra AK
    Proc Natl Acad Sci U S A; 2010 Aug; 107(32):14070-4. PubMed ID: 20660775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.