These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 26224033)

  • 1. Gold-Catalyzed Reductive Transformation of Nitro Compounds Using Formic Acid: Mild, Efficient, and Versatile.
    Yu L; Zhang Q; Li SS; Huang J; Liu YM; He HY; Cao Y
    ChemSusChem; 2015 Sep; 8(18):3029-35. PubMed ID: 26224033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supported gold catalysis: from small molecule activation to green chemical synthesis.
    Liu X; He L; Liu YM; Cao Y
    Acc Chem Res; 2014 Mar; 47(3):793-804. PubMed ID: 24328524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient and Selective N-Methylation of Nitroarenes under Mild Reaction Conditions.
    Pedrajas E; Sorribes I; Guillamón E; Junge K; Beller M; Llusar R
    Chemistry; 2017 Sep; 23(53):13205-13212. PubMed ID: 28767165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iron-catalyzed synthesis of secondary amines: on the way to green reductive aminations.
    Stemmler T; Surkus AE; Pohl MM; Junge K; Beller M
    ChemSusChem; 2014 Nov; 7(11):3012-6. PubMed ID: 25196429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic Reductive Amination of Aldehydes and Ketones With Nitro Compounds: New Light on an Old Reaction.
    Sukhorukov AY
    Front Chem; 2020; 8():215. PubMed ID: 32351929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient subnanometric gold-catalyzed hydrogen generation via formic acid decomposition under ambient conditions.
    Bi QY; Du XL; Liu YM; Cao Y; He HY; Fan KN
    J Am Chem Soc; 2012 May; 134(21):8926-33. PubMed ID: 22568664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transition-metal-catalyzed C-N bond forming reactions using organic azides as the nitrogen source: a journey for the mild and versatile C-H amination.
    Shin K; Kim H; Chang S
    Acc Chem Res; 2015 Apr; 48(4):1040-52. PubMed ID: 25821998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methods for Direct Reductive N-Methylation of Nitro Compounds.
    Jiang Z; Mahmood EA; Harofteh NZ; Ebadi AG; Toughani M; Vessally E
    Top Curr Chem (Cham); 2022 May; 380(4):27. PubMed ID: 35606628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reductive electrophilic C-H alkylation of quinolines by a reusable iridium nanocatalyst.
    Xie R; Mao W; Jia H; Sun J; Lu G; Jiang H; Zhang M
    Chem Sci; 2021 Oct; 12(41):13802-13808. PubMed ID: 34760165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supported Gold Nanoparticle-Catalyzed Selective Reduction of Multifunctional, Aromatic Nitro Precursors into Amines and Synthesis of 3,4-Dihydroquinoxalin-2-Ones.
    Iordanidou D; Kallitsakis MG; Tzani MA; Ioannou DI; Zarganes-Tzitzikas T; Neochoritis CG; Dömling A; Terzidis MA; Lykakis IN
    Molecules; 2022 Jul; 27(14):. PubMed ID: 35889270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterogeneous Catalytic Hydrogenation of Levulinic Acid to γ-Valerolactone with Formic Acid as Internal Hydrogen Source.
    Yu Z; Lu X; Xiong J; Li X; Bai H; Ji N
    ChemSusChem; 2020 Jun; 13(11):2916-2930. PubMed ID: 32153131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal-free catalyst for the chemoselective methylation of amines using carbon dioxide as a carbon source.
    Das S; Bobbink FD; Laurenczy G; Dyson PJ
    Angew Chem Int Ed Engl; 2014 Nov; 53(47):12876-9. PubMed ID: 25256038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ZnO as a new catalyst for N-formylation of amines under solvent-free conditions.
    Hosseini-Sarvari M; Sharghi H
    J Org Chem; 2006 Aug; 71(17):6652-4. PubMed ID: 16901164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homogeneous Catalysis for Sustainable Hydrogen Storage in Formic Acid and Alcohols.
    Sordakis K; Tang C; Vogt LK; Junge H; Dyson PJ; Beller M; Laurenczy G
    Chem Rev; 2018 Jan; 118(2):372-433. PubMed ID: 28985048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gold-catalyzed three-component tandem process: an efficient and facile assembly of complex butenolides from alkynes, amines, and glyoxylic acid.
    Zhang Q; Cheng M; Hu X; Li BG; Ji JX
    J Am Chem Soc; 2010 Jun; 132(21):7256-7. PubMed ID: 20455531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective aerobic oxidation of methanol in the coexistence of amines by nanoporous gold catalysts: highly efficient synthesis of formamides.
    Tanaka S; Minato T; Ito E; Hara M; Kim Y; Yamamoto Y; Asao N
    Chemistry; 2013 Sep; 19(36):11832-6. PubMed ID: 23946236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An unusual chemoselective hydrogenation of quinoline compounds using supported gold catalysts.
    Ren D; He L; Yu L; Ding RS; Liu YM; Cao Y; He HY; Fan KN
    J Am Chem Soc; 2012 Oct; 134(42):17592-8. PubMed ID: 23020578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic conversion of nonfood woody biomass solids to organic liquids.
    Barta K; Ford PC
    Acc Chem Res; 2014 May; 47(5):1503-12. PubMed ID: 24745655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gold α-oxo carbenoids in catalysis: catalytic oxygen-atom transfer to alkynes.
    Xiao J; Li X
    Angew Chem Int Ed Engl; 2011 Aug; 50(32):7226-36. PubMed ID: 21726021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assembly of macrocycles by zirconocene-mediated, reversible carbon-carbon bond formation.
    Gessner VH; Tannaci JF; Miller AD; Tilley TD
    Acc Chem Res; 2011 Jun; 44(6):435-46. PubMed ID: 21473633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.