These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 26224085)

  • 1. Effects of Bone Vibrator Position on Auditory Spatial Perception Tasks.
    McBride M; Tran P; Pollard KA; Letowski T; McMillan GP
    Hum Factors; 2015 Dec; 57(8):1443-58. PubMed ID: 26224085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial audio through a bone conduction interface.
    MacDonald JA; Henry PP; Letowski TR
    Int J Audiol; 2006 Oct; 45(10):595-9. PubMed ID: 17062501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Stimulation Position and Frequency Band on Auditory Spatial Perception with Bilateral Bone Conduction.
    Wang J; Lu X; Sang J; Cai J; Zheng C
    Trends Hear; 2022; 26():23312165221097196. PubMed ID: 35491731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of distractor sounds presented through bone conduction headphones on the localization of critical environmental sounds.
    May KR; Walker BN
    Appl Ergon; 2017 May; 61():144-158. PubMed ID: 28237013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transmission of bone conducted sound - correlation between hearing perception and cochlear vibration.
    Eeg-Olofsson M; Stenfelt S; Taghavi H; Reinfeldt S; Håkansson B; Tengstrand T; Finizia C
    Hear Res; 2013 Dec; 306():11-20. PubMed ID: 24047594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of a bone conduction communication channel on multichannel communication system effectiveness.
    Blue M; McBride M; Weatherless R; Letowski T
    Hum Factors; 2013 Apr; 55(2):346-55. PubMed ID: 23691830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental Analysis of the Mechanism of Hearing under Water.
    Chordekar S; Kishon-Rabin L; Kriksunov L; Adelman C; Sohmer H
    Biomed Res Int; 2015; 2015():526708. PubMed ID: 26770975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling distance-dependent individual head-related transfer functions in the horizontal plane using frontal projection headphones.
    Sunder K; Gan WS; Tan EL
    J Acoust Soc Am; 2015 Jul; 138(1):150-71. PubMed ID: 26233016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Examination of bone-conducted transmission from sound field excitation measured by thresholds, ear-canal sound pressure, and skull vibrations.
    Reinfeldt S; Stenfelt S; Good T; Håkansson B
    J Acoust Soc Am; 2007 Mar; 121(3):1576-87. PubMed ID: 17407895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Horizontal plane sound source localization and auditory enhancement.
    Smith JR; Lombard WR; Shaba MN
    Work; 2012; 41 Suppl 1():1994-2000. PubMed ID: 22317009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone conduction thresholds and skull vibration measured on the teeth during stimulation at different sites on the human head.
    Ito T; Röösli C; Kim CJ; Sim JH; Huber AM; Probst R
    Audiol Neurootol; 2011; 16(1):12-22. PubMed ID: 20453499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sound wave propagation on the human skull surface with bone conduction stimulation.
    Dobrev I; Sim JH; Stenfelt S; Ihrle S; Gerig R; Pfiffner F; Eiber A; Huber AM; Röösli C
    Hear Res; 2017 Nov; 355():1-13. PubMed ID: 28964568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The latency of auditory nerve brainstem evoked responses to air- and bone-conducted stimuli.
    Sohmer H; Freeman S
    Hear Res; 2001 Oct; 160(1-2):111-3. PubMed ID: 11591496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Auditory azimuthal localization performance in water as a function of prior exposure.
    Savel S; Drake C
    Hum Factors; 2014 Jun; 56(4):772-83. PubMed ID: 25029901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Further evidence for a fluid pathway during bone conduction auditory stimulation.
    Sohmer H; Freeman S
    Hear Res; 2004 Jul; 193(1-2):105-10. PubMed ID: 15219325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphological differences affect speech transmission over bone conduction.
    Pollard KA; Tran PK; Letowski T
    J Acoust Soc Am; 2017 Feb; 141(2):936. PubMed ID: 28253648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of inner ear bone vibrations during auditory stimulation by bone conduction and by soft tissue conduction.
    Chordekar S; Perez R; Adelman C; Sohmer H
    J Basic Clin Physiol Pharmacol; 2013; 24(3):201-4. PubMed ID: 23893679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutual cancellation between tones presented by air conduction, by bone conduction and by non-osseous (soft tissue) bone conduction.
    Chordekar S; Kriksunov L; Kishon-Rabin L; Adelman C; Sohmer H
    Hear Res; 2012 Jan; 283(1-2):180-4. PubMed ID: 22037489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparisons of auditory steady state response and behavioral air conduction and bone conduction thresholds for infants and adults with normal hearing.
    Casey KA; Small SA
    Ear Hear; 2014; 35(4):423-39. PubMed ID: 24569693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of vocal and demographic traits on speech intelligibility over bone conduction.
    Pollard KA; Tran PK; Letowski T
    J Acoust Soc Am; 2015 Apr; 137(4):2060-9. PubMed ID: 25920856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.