These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
78 related articles for article (PubMed ID: 26224302)
1. Synthesis and physicochemical properties of novel lophine derivatives as chemiluminescent in vitro activators for detection of free radicals. Pavlova E; Kaloyanova S; Deligeorgiev T; Lesev N Eur Biophys J; 2015 Dec; 44(8):623-34. PubMed ID: 26224302 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of lophine derivatives as L-012 (luminol analog)-dependent chemiluminescence enhancers for measuring horseradish peroxidase and H2O2. Ichibangase T; Ohba Y; Kishikawa N; Nakashima K; Kuroda N Luminescence; 2014 Mar; 29(2):118-21. PubMed ID: 23630098 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of chemiluminescence reagents for selective detection of reactive oxygen species. Yamaguchi S; Kishikawa N; Ohyama K; Ohba Y; Kohno M; Masuda T; Takadate A; Nakashima K; Kuroda N Anal Chim Acta; 2010 Apr; 665(1):74-8. PubMed ID: 20381693 [TBL] [Abstract][Full Text] [Related]
4. Comparative study on the antioxidant capacities of synthetic influenza inhibitors and ellagic acid in model systems. Pavlova EL; Zografov NN; Simeonova LS Biomed Pharmacother; 2016 Oct; 83():755-762. PubMed ID: 27479194 [TBL] [Abstract][Full Text] [Related]
5. The effect of quenchers on the chemiluminescence of luminol and lucigenin. Bottu G J Biolumin Chemilumin; 1989; 3(2):59-65. PubMed ID: 2728913 [TBL] [Abstract][Full Text] [Related]
6. Light generation with Fenton's reagent. Its relationship to granulocyte chemiluminescence. Andersen BR; Harvath L Biochim Biophys Acta; 1979 Apr; 584(1):164-73. PubMed ID: 444577 [TBL] [Abstract][Full Text] [Related]
7. Imidazolium-based ionic liquid derivative/Cu(II) complexes as efficient catalysts of the lucigenin chemiluminescence system and its application to H2O 2 and glucose detection. Khajvand T; Alijanpour O; Chaichi MJ; Vafaeezadeh M; Hashemi MM Anal Bioanal Chem; 2015 Aug; 407(20):6127-36. PubMed ID: 26163131 [TBL] [Abstract][Full Text] [Related]
8. Detection of Hydroxyl and Perhydroxyl Radical Generation from Bleaching Agents with Nuclear Magnetic Resonance Spectroscopy. Sharma H; Sharma DS J Clin Pediatr Dent; 2017; 41(2):126-134. PubMed ID: 28288300 [TBL] [Abstract][Full Text] [Related]
9. Prooxidant and antimicrobic effects of iron and titanium oxide nanoparticles and thalicarpine. Pavlova EL; Toshkovska RD; Doncheva TE; Ivanova IA Arch Microbiol; 2020 Sep; 202(7):1873-1880. PubMed ID: 32448965 [TBL] [Abstract][Full Text] [Related]
10. Phenoxyl radical-induced thiol-dependent generation of reactive oxygen species: implications for benzene toxicity. Stoyanovsky DA; Goldman R; Claycamp HG; Kagan VE Arch Biochem Biophys; 1995 Mar; 317(2):315-23. PubMed ID: 7893144 [TBL] [Abstract][Full Text] [Related]
11. Lophine derivatives as versatile analytical tools. Nakashima K Biomed Chromatogr; 2003; 17(2-3):83-95. PubMed ID: 12717796 [TBL] [Abstract][Full Text] [Related]
12. A new technique for enhancing luminol luminescent detection of free radicals and reactive oxygen species. Trevithick JR; Dzialoszynski T Biochem Mol Biol Int; 1994 Aug; 33(6):1179-90. PubMed ID: 7804144 [TBL] [Abstract][Full Text] [Related]
13. Degradation of trace contaminants using coupled sonochemistry and Fenton's reagent. Jiang Y; Waite TD Water Sci Technol; 2003; 47(10):85-92. PubMed ID: 12862221 [TBL] [Abstract][Full Text] [Related]
14. A novel luciferin-based bright chemiluminescent probe for the detection of reactive oxygen species. Sekiya M; Umezawa K; Sato A; Citterio D; Suzuki K Chem Commun (Camb); 2009 Jun; (21):3047-9. PubMed ID: 19462082 [TBL] [Abstract][Full Text] [Related]
15. A comparison of chemical systems for luminometric determination of antioxidant capacity towards individual reactive oxygen species. Komrskova D; Lojek A; Hrbac J; Ciz M Luminescence; 2006; 21(4):239-44. PubMed ID: 16791875 [TBL] [Abstract][Full Text] [Related]
16. Gallic acid degradation in aqueous solutions by UV/H2O2 treatment, Fenton's reagent and the photo-Fenton system. Benitez FJ; Real FJ; Acero JL; Leal AI; Garcia C J Hazard Mater; 2005 Nov; 126(1-3):31-9. PubMed ID: 16051431 [TBL] [Abstract][Full Text] [Related]
17. Enhanced Cisplatin Chemotherapy by Iron Oxide Nanocarrier-Mediated Generation of Highly Toxic Reactive Oxygen Species. Ma P; Xiao H; Yu C; Liu J; Cheng Z; Song H; Zhang X; Li C; Wang J; Gu Z; Lin J Nano Lett; 2017 Feb; 17(2):928-937. PubMed ID: 28139118 [TBL] [Abstract][Full Text] [Related]
18. The effect of buffers and chelators on the reaction of luminol with Fenton's reagent near neutral pH. Bottu G J Biolumin Chemilumin; 1991; 6(3):147-51. PubMed ID: 1660669 [TBL] [Abstract][Full Text] [Related]
19. Scavenging of reactive oxygen species by N-substituted indole-2 and 3-carboxamides. Aboul-Enein HY; Kruk I; Lichszteld K; Michalska T; Kladna A; Marczynski S; Olgen S Luminescence; 2004; 19(1):1-7. PubMed ID: 14981640 [TBL] [Abstract][Full Text] [Related]
20. Mechanism for the destruction of carbon tetrachloride and chloroform DNAPLs by modified Fenton's reagent. Smith BA; Teel AL; Watts RJ J Contam Hydrol; 2006 May; 85(3-4):229-46. PubMed ID: 16546290 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]