These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 26224491)

  • 1. Effects of real and simulated weightlessness on the cardiac and peripheral vascular functions of humans: A review.
    Zhu H; Wang H; Liu Z
    Int J Occup Med Environ Health; 2015; 28(5):793-802. PubMed ID: 26224491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Weightlessness or weightlessness simulation and vascular remodeling].
    Yue Y; Yao YJ; Sun XQ; Wu XY
    Space Med Med Eng (Beijing); 2003 Apr; 16(2):152-6. PubMed ID: 12830841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional changes cardiovascular: normobaric activity and microgravity in young healthy human subjects.
    Alessandri N; Petrassi M; Tufano F; Dei Giudici A; De Angelis S; Urciuoli F; Alessandri C; De Angelis C; Tomao E
    Eur Rev Med Pharmacol Sci; 2012 Mar; 16(3):310-5. PubMed ID: 22530346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Respiratory modulation of cardiovascular rhythms before and after short-duration human spaceflight.
    Verheyden B; Beckers F; Couckuyt K; Liu J; Aubert AE
    Acta Physiol (Oxf); 2007 Dec; 191(4):297-308. PubMed ID: 17784903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human tolerance to acceleration after exposure to weightlessness.
    Kotovskaya AR
    Life Sci Space Res; 1976; 14():129-35. PubMed ID: 11977270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Shifts in metabolism and its regulation under the effect of spaceflight factors].
    Larina IM; Nichiporuk IA; Veselova OM; Vasilieva GY; Popova IA
    Aviakosm Ekolog Med; 2013; 47(1):21-30. PubMed ID: 23700613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cardiac and vascular responses to thigh cuffs and respiratory maneuvers on crewmembers of the International Space Station.
    Hamilton DR; Sargsyan AE; Garcia K; Ebert DJ; Whitson PA; Feiveson AH; Alferova IV; Dulchavsky SA; Matveev VP; Bogomolov VV; Duncan JM
    J Appl Physiol (1985); 2012 Feb; 112(3):454-62. PubMed ID: 21903875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blood pressure regulation IV: adaptive responses to weightlessness.
    Norsk P
    Eur J Appl Physiol; 2014 Mar; 114(3):481-97. PubMed ID: 24390686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Peripheral effector mechanism hypothesis on cardiovascular dysfunction after spaceflight].
    Zhang LF; Yu ZB; Ma J; Mao QW
    Sheng Li Ke Xue Jin Zhan; 2001 Jan; 32(1):13-7. PubMed ID: 12545770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation of macro and micro cardiovascular function during weightlessness and simulated weightlessness.
    Hutchins PM; Marshburn TH; Smith TL; Osborne SW; Lynch CD; Moultsby SJ
    Acta Astronaut; 1988; 17(2):253-6. PubMed ID: 11537101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insight into mechanisms of reduced orthostatic performance after exposure to microgravity: comparison of ground-based and space flight data.
    Convertino VA
    J Gravit Physiol; 1998 Jul; 5(1):P85-8. PubMed ID: 11542376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Consequences of cardiovascular adaptation to spaceflight: implications for the use of pharmacological countermeasures.
    Convertino VA
    Gravit Space Biol Bull; 2005 Jun; 18(2):59-69. PubMed ID: 16038093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effects of weightlessness on baroreflex function].
    Shen XY
    Space Med Med Eng (Beijing); 2002 Dec; 15(6):465-8. PubMed ID: 12622102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 24-hr blood pressure in HDT-bed rest and short-lasting space flight.
    Karemaker JM; Gisolf J; Stok WJ; van Montfrans GA
    J Gravit Physiol; 2007 Jul; 14(1):P49-50. PubMed ID: 18372694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The paradox of systemic vasodilatation and sympathetic nervous stimulation in space.
    Norsk P; Christensen NJ
    Respir Physiol Neurobiol; 2009 Oct; 169 Suppl 1():S26-9. PubMed ID: 19651245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human cerebral autoregulation before, during and after spaceflight.
    Iwasaki K; Levine BD; Zhang R; Zuckerman JH; Pawelczyk JA; Diedrich A; Ertl AC; Cox JF; Cooke WH; Giller CA; Ray CA; Lane LD; Buckey JC; Baisch FJ; Eckberg DL; Robertson D; Biaggioni I; Blomqvist CG
    J Physiol; 2007 Mar; 579(Pt 3):799-810. PubMed ID: 17185344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A computer simulation of short-term adaptations of cardiovascular hemodynamics in microgravity.
    Gerber B; Singh JL; Zhang Y; Liou W
    Comput Biol Med; 2018 Nov; 102():86-94. PubMed ID: 30253272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cardiac and vascular adaptation to 0g with and without thigh cuffs (Antares 14 and Altair 21 day Mir spaceflights).
    Arbeille Ph; Fomina G; Achaibou F; Pottier J; Kotovskaya A
    Acta Astronaut; 1995; 36(8-12):753-62. PubMed ID: 11541012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Spaceflight on Cardiovascular Physiology and Health.
    Shen M; Frishman WH
    Cardiol Rev; 2019; 27(3):122-126. PubMed ID: 30365406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Cardiovascular effects of the exposure to a microgravitational environment].
    Santos PE; Bonamino MH
    Arq Bras Cardiol; 2003 Jan; 80(1):105-15. PubMed ID: 12612731
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.