BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 26224526)

  • 1. Corn stover harvest increases herbicide movement to subsurface drains - Root Zone Water Quality Model simulations.
    Shipitalo MJ; Malone RW; Ma L; Nolan BT; Kanwar RS; Shaner DL; Pederson CH
    Pest Manag Sci; 2016 Jun; 72(6):1124-32. PubMed ID: 26224526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Runoff and drainage losses of atrazine, metribuzin, and metolachlor in three water management systems.
    Gaynor JD; Tan CS; Drury CF; Welacky TW; Ng HY; Reynolds WD
    J Environ Qual; 2002; 31(1):300-8. PubMed ID: 11841063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Test of the Root Zone Water Quality Model (RZWQM) for predicting runoff of atrazine, alachlor and fenamiphos species from conventional-tillage corn mesoplots.
    Ma Q; Wauchope RD; Ma L; Rojas KW; Malone RW; Ahuja LR
    Pest Manag Sci; 2004 Mar; 60(3):267-76. PubMed ID: 15025238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preferential bromide and pesticide movement to tile drains under different cropping practices.
    Fortin J; Gagnon-Bertrand E; Vézina L; Rompré M
    J Environ Qual; 2002; 31(6):1940-52. PubMed ID: 12469844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tillage, intercrop, and controlled drainage-subirrigation influence atrazine, metribuzin, and metolachlor loss.
    Gaynor JD; Tan CS; Drury CF; Ng HY; Welacky TW; van Wesenbeeck IJ
    J Environ Qual; 2001; 30(2):561-72. PubMed ID: 11285918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of rainfall distribution on simulations of atrazine, metolachlor, and isoxaflutole/metabolite transport in subsurface drained fields.
    Fox GA; Pulijala SH; Sabbagh GJ
    J Agric Food Chem; 2007 Jul; 55(14):5399-407. PubMed ID: 17552537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Herbicide leaching as affected by macropore flow and within-storm rainfall intensity variation: a RZWQM simulation.
    Malone RW; Weatherington-Rice J; Shipitalo MJ; Fausey N; Ma L; Ahuja LR; Wauchope RD; Ma Q
    Pest Manag Sci; 2004 Mar; 60(3):277-85. PubMed ID: 15025239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sorption of atrazine and metolachlor by burrow linings developed in soils with different crop residues at the surface.
    Farenhorst A; Topp E; Bowman BT; Tomlin AD; Bryan RB
    J Environ Sci Health B; 2001 Jul; 36(4):389-96. PubMed ID: 11495017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of grass and grass with poplar buffer strips on atrazine and metolachlor losses in surface runoff and subsurface infiltration from agricultural plots.
    Caron E; Lafrance P; Auclair JC; Duchemin M
    J Environ Qual; 2010; 39(2):617-29. PubMed ID: 20176835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corn stover harvest N and energy budgets in central Iowa.
    Malone RW; Herbstritt S; Ma L; Richard TL; Cibin R; Gassman PW; Zhang HH; Karlen DL; Hatfield JL; Obrycki JF; Helmers MJ; Jaynes DB; Kaspar TC; Parkin TB; Fang QX
    Sci Total Environ; 2019 May; 663():776-792. PubMed ID: 30738259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atrazine and metolachlor in surface runoff under typical rainfall conditions in southern Louisiana.
    Southwick LM; Grigg BC; Fouss JL; Kornecki TS
    J Agric Food Chem; 2003 Aug; 51(18):5355-61. PubMed ID: 12926883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interrelationship of macropores and subsurface drainage for conservative tracer and pesticide transport.
    Fox GA; Malone R; Sabbagh GJ; Rojas K
    J Environ Qual; 2004; 33(6):2281-9. PubMed ID: 15537951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sorption of atrazine and metolachlor by earthworm surface castings and soil.
    Farenhorst A; Bowman BT
    J Environ Sci Health B; 2000 Mar; 35(2):157-73. PubMed ID: 10736766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface runoff and subsurface tile drain losses of neonicotinoids and companion herbicides at edge-of-field.
    Chrétien F; Giroux I; Thériault G; Gagnon P; Corriveau J
    Environ Pollut; 2017 May; 224():255-264. PubMed ID: 28209433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tillage system, application rate, and extreme event effects on herbicide losses in surface runoff.
    Shipitalo MJ; Owens LB
    J Environ Qual; 2006; 35(6):2186-94. PubMed ID: 17071888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial variability of atrazine and metolachlor dissipation on dryland no-tillage crop fields in Colorado.
    Bridges M; Henry WB; Shaner DL; Khosla R; Westra P; Reich R
    J Environ Qual; 2008; 37(6):2212-20. PubMed ID: 18948474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of watershed system management on herbicide concentrations in Mississippi Delta oxbow lakes.
    Zablotowicz RM; Locke MA; Krutz LJ; Lerch RN; Lizotte RE; Knight SS; Gordon RE; Steinriede RW
    Sci Total Environ; 2006 Nov; 370(2-3):552-60. PubMed ID: 17005240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulated fate and transport of metolachlor in the unsaturated zone, Maryland, USA.
    Bayless ER; Capel PD; Barbash JE; Webb RM; Hancock TL; Lampe DC
    J Environ Qual; 2008; 37(3):1064-72. PubMed ID: 18453428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative losses of glyphosate and selected residual herbicides in surface runoff from conservation-tilled watersheds planted with corn or soybean.
    Shipitalo MJ; Owens LB
    J Environ Qual; 2011; 40(4):1281-9. PubMed ID: 21712598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulating nitrate drainage losses from a Walnut Creek watershed field.
    Bakhsh A; Hatfield JL; Kanwar RS; Ma L; Ahuja LR
    J Environ Qual; 2004; 33(1):114-23. PubMed ID: 14964365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.