BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 26224556)

  • 1. Iron deficiency responses in rice roots.
    Kobayashi T; Nakanishi Itai R; Nishizawa NK
    Rice (N Y); 2014 Dec; 7(1):27. PubMed ID: 26224556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The rice transcription factor IDEF1 is essential for the early response to iron deficiency, and induces vegetative expression of late embryogenesis abundant genes.
    Kobayashi T; Itai RN; Ogo Y; Kakei Y; Nakanishi H; Takahashi M; Nishizawa NK
    Plant J; 2009 Dec; 60(6):948-61. PubMed ID: 19737364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rice genes involved in phytosiderophore biosynthesis are synchronously regulated during the early stages of iron deficiency in roots.
    Itai RN; Ogo Y; Kobayashi T; Nakanishi H; Nishizawa NK
    Rice (N Y); 2013 Jun; 6(1):16. PubMed ID: 24280375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and localisation of the rice nicotianamine aminotransferase gene OsNAAT1 expression suggests the site of phytosiderophore synthesis in rice.
    Inoue H; Takahashi M; Kobayashi T; Suzuki M; Nakanishi H; Mori S; Nishizawa NK
    Plant Mol Biol; 2008 Jan; 66(1-2):193-203. PubMed ID: 18034312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Molecular Mechanisms Underlying Iron Deficiency Responses in Rice.
    Li Q; Chen L; Yang A
    Int J Mol Sci; 2019 Dec; 21(1):. PubMed ID: 31861687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The iron-chelate transporter OsYSL9 plays a role in iron distribution in developing rice grains.
    Senoura T; Sakashita E; Kobayashi T; Takahashi M; Aung MS; Masuda H; Nakanishi H; Nishizawa NK
    Plant Mol Biol; 2017 Nov; 95(4-5):375-387. PubMed ID: 28871478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rice OsYSL15 is an iron-regulated iron(III)-deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings.
    Inoue H; Kobayashi T; Nozoye T; Takahashi M; Kakei Y; Suzuki K; Nakazono M; Nakanishi H; Mori S; Nishizawa NK
    J Biol Chem; 2009 Feb; 284(6):3470-9. PubMed ID: 19049971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How Does Rice Defend Against Excess Iron?: Physiological and Molecular Mechanisms.
    Aung MS; Masuda H
    Front Plant Sci; 2020; 11():1102. PubMed ID: 32849682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deoxymugineic acid increases Zn translocation in Zn-deficient rice plants.
    Suzuki M; Tsukamoto T; Inoue H; Watanabe S; Matsuhashi S; Takahashi M; Nakanishi H; Mori S; Nishizawa NK
    Plant Mol Biol; 2008 Apr; 66(6):609-17. PubMed ID: 18224446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The rice bHLH protein OsIRO2 is an essential regulator of the genes involved in Fe uptake under Fe-deficient conditions.
    Ogo Y; Itai RN; Nakanishi H; Kobayashi T; Takahashi M; Mori S; Nishizawa NK
    Plant J; 2007 Aug; 51(3):366-77. PubMed ID: 17559517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron.
    Inoue H; Higuchi K; Takahashi M; Nakanishi H; Mori S; Nishizawa NK
    Plant J; 2003 Nov; 36(3):366-81. PubMed ID: 14617093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brassinosteroids are involved in Fe homeostasis in rice (Oryza sativa L.).
    Wang B; Li G; Zhang WH
    J Exp Bot; 2015 May; 66(9):2749-61. PubMed ID: 25770588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new transgenic rice line exhibiting enhanced ferric iron reduction and phytosiderophore production confers tolerance to low iron availability in calcareous soil.
    Masuda H; Shimochi E; Hamada T; Senoura T; Kobayashi T; Aung MS; Ishimaru Y; Ogo Y; Nakanishi H; Nishizawa NK
    PLoS One; 2017; 12(3):e0173441. PubMed ID: 28278216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. OsYSL16 plays a role in the allocation of iron.
    Kakei Y; Ishimaru Y; Kobayashi T; Yamakawa T; Nakanishi H; Nishizawa NK
    Plant Mol Biol; 2012 Aug; 79(6):583-94. PubMed ID: 22644443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Phytosiderophore Efflux Transporter TOM2 Is Involved in Metal Transport in Rice.
    Nozoye T; Nagasaka S; Kobayashi T; Sato Y; Uozumi N; Nakanishi H; Nishizawa NK
    J Biol Chem; 2015 Nov; 290(46):27688-99. PubMed ID: 26432636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the Nicotianamine Exporter ENA1 in Rice.
    Nozoye T; von Wirén N; Sato Y; Higashiyama T; Nakanishi H; Nishizawa NK
    Front Plant Sci; 2019; 10():502. PubMed ID: 31114596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oryza sativa POSITIVE REGULATOR OF IRON DEFICIENCY RESPONSE 2 (OsPRI2) and OsPRI3 are involved in the maintenance of Fe homeostasis.
    Zhang H; Li Y; Pu M; Xu P; Liang G; Yu D
    Plant Cell Environ; 2020 Jan; 43(1):261-274. PubMed ID: 31674679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Paralogs and mutants show that one DMA synthase functions in iron homeostasis in rice.
    Bashir K; Nozoye T; Nagasaka S; Rasheed S; Miyauchi N; Seki M; Nakanishi H; Nishizawa NK
    J Exp Bot; 2017 Mar; 68(7):1785-1795. PubMed ID: 28369596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The expression of iron homeostasis-related genes during rice germination.
    Nozoye T; Inoue H; Takahashi M; Ishimaru Y; Nakanishi H; Mori S; Nishizawa NK
    Plant Mol Biol; 2007 May; 64(1-2):35-47. PubMed ID: 17333504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nicotianamine synthase gene expression differs in barley and rice under Fe-deficient conditions.
    Higuchi K; Watanabe S; Takahashi M; Kawasaki S; Nakanishi H; Nishizawa NK; Mori S
    Plant J; 2001 Jan; 25(2):159-67. PubMed ID: 11169192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.