BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 26224851)

  • 1. Structural Variability within Frontoparietal Networks and Individual Differences in Attentional Functions: An Approach Using the Theory of Visual Attention.
    Chechlacz M; Gillebert CR; Vangkilde SA; Petersen A; Humphreys GW
    J Neurosci; 2015 Jul; 35(30):10647-58. PubMed ID: 26224851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A matter of hand: Causal links between hand dominance, structural organization of fronto-parietal attention networks, and variability in behavioural responses to transcranial magnetic stimulation.
    Cazzoli D; Chechlacz M
    Cortex; 2017 Jan; 86():230-246. PubMed ID: 27405259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visual Short-Term Memory Activity in Parietal Lobe Reflects Cognitive Processes beyond Attentional Selection.
    Sheremata SL; Somers DC; Shomstein S
    J Neurosci; 2018 Feb; 38(6):1511-1519. PubMed ID: 29311140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetry and Structure of the Fronto-Parietal Networks Underlie Visuomotor Processing in Humans.
    Budisavljevic S; Dell'Acqua F; Zanatto D; Begliomini C; Miotto D; Motta R; Castiello U
    Cereb Cortex; 2017 Feb; 27(2):1532-1544. PubMed ID: 26759477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anatomical Connectivity of the Visuospatial Attentional Network in Schizophrenia: A Diffusion Tensor Imaging Tractography Study.
    Leroux E; Poirel N; Dollfus S
    J Neuropsychiatry Clin Neurosci; 2020; 32(3):266-273. PubMed ID: 31948322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altered hemispheric lateralization of white matter pathways in developmental dyslexia: Evidence from spherical deconvolution tractography.
    Zhao J; Thiebaut de Schotten M; Altarelli I; Dubois J; Ramus F
    Cortex; 2016 Mar; 76():51-62. PubMed ID: 26859852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. White matter and visuospatial processing in autism: a constrained spherical deconvolution tractography study.
    McGrath J; Johnson K; O'Hanlon E; Garavan H; Gallagher L; Leemans A
    Autism Res; 2013 Oct; 6(5):307-19. PubMed ID: 23509018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bottom-Up and Top-Down Factors Differentially Influence Stimulus Representations Across Large-Scale Attentional Networks.
    Long NM; Kuhl BA
    J Neurosci; 2018 Mar; 38(10):2495-2504. PubMed ID: 29437930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Abnormal fronto-parietal white matter organisation in the superior longitudinal fasciculus branches in autism spectrum disorders.
    Fitzgerald J; Leemans A; Kehoe E; O'Hanlon E; Gallagher L; McGrath J
    Eur J Neurosci; 2018 Mar; 47(6):652-661. PubMed ID: 28741714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feature-Selective Attentional Modulations in Human Frontoparietal Cortex.
    Ester EF; Sutterer DW; Serences JT; Awh E
    J Neurosci; 2016 Aug; 36(31):8188-99. PubMed ID: 27488638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Common brain networks for distinct deficits in visual neglect. A combined structural and tractography MRI approach.
    Toba MN; Migliaccio R; Batrancourt B; Bourlon C; Duret C; Pradat-Diehl P; Dubois B; Bartolomeo P
    Neuropsychologia; 2018 Jul; 115():167-178. PubMed ID: 29054427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TMS over the right precuneus reduces the bilateral field advantage in visual short term memory capacity.
    Kraft A; Dyrholm M; Kehrer S; Kaufmann C; Bruening J; Kathmann N; Bundesen C; Irlbacher K; Brandt SA
    Brain Stimul; 2015; 8(2):216-23. PubMed ID: 25481073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Individual differences in attentional lapses are associated with fiber-specific white matter microstructure in healthy adults.
    Clemente A; Domínguez D JF; Imms P; Burmester A; Dhollander T; Wilson PH; Poudel G; Caeyenberghs K
    Psychophysiology; 2021 Sep; 58(9):e13871. PubMed ID: 34096075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shifting attentional priorities: control of spatial attention through hemispheric competition.
    Szczepanski SM; Kastner S
    J Neurosci; 2013 Mar; 33(12):5411-21. PubMed ID: 23516306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Individual attentional selection capacities are reflected in interhemispheric connectivity of the parietal cortex.
    Vossel S; Weidner R; Moos K; Fink GR
    Neuroimage; 2016 Apr; 129():148-158. PubMed ID: 26827815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional segregation and integration within fronto-parietal networks.
    Parlatini V; Radua J; Dell'Acqua F; Leslie A; Simmons A; Murphy DG; Catani M; Thiebaut de Schotten M
    Neuroimage; 2017 Feb; 146():367-375. PubMed ID: 27639357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frontoparietal activity and its structural connectivity in binocular rivalry.
    Wilcke JC; O'Shea RP; Watts R
    Brain Res; 2009 Dec; 1305():96-107. PubMed ID: 19782667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Left fronto-parietal white matter correlates with individual differences in children's ability to solve additions and multiplications: a tractography study.
    Van Beek L; Ghesquière P; Lagae L; De Smedt B
    Neuroimage; 2014 Apr; 90():117-27. PubMed ID: 24368261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frontal cortical regions associated with attention connect more strongly to central than peripheral V1.
    Sims SA; Demirayak P; Cedotal S; Visscher KM
    Neuroimage; 2021 Sep; 238():118246. PubMed ID: 34111516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential Contributions of GABA Concentration in Frontal and Parietal Regions to Individual Differences in Attentional Blink.
    Kihara K; Kondo HM; Kawahara JI
    J Neurosci; 2016 Aug; 36(34):8895-901. PubMed ID: 27559171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.