These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 26225206)

  • 1. Constraint and diversification of developmental trajectories in cichlid facial morphologies.
    Powder KE; Milch K; Asselin G; Albertson RC
    Evodevo; 2015; 6():25. PubMed ID: 26225206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphological and temporal variation in early embryogenesis contributes to species divergence in Malawi cichlid fishes.
    Marconi A; Yang CZ; McKay S; Santos ME
    Evol Dev; 2023 Mar; 25(2):170-193. PubMed ID: 36748313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental basis of phenotypic integration in two Lake Malawi cichlids.
    Le Pabic P; Cooper WJ; Schilling TF
    Evodevo; 2016; 7():3. PubMed ID: 26798449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cichlid fishes as a model to understand normal and clinical craniofacial variation.
    Powder KE; Albertson RC
    Dev Biol; 2016 Jul; 415(2):338-346. PubMed ID: 26719128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Embryonic and larval development in the Midas cichlid fish species flock (Amphilophus spp.): a new evo-devo model for the investigation of adaptive novelties and species differences.
    Kratochwil CF; Sefton MM; Meyer A
    BMC Dev Biol; 2015 Feb; 15():12. PubMed ID: 25887993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic and developmental basis for fin shape variation in African cichlid fishes.
    Navon D; Olearczyk N; Albertson RC
    Mol Ecol; 2017 Jan; 26(1):291-303. PubMed ID: 27900808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Foraging environment determines the genetic architecture and evolutionary potential of trophic morphology in cichlid fishes.
    Parsons KJ; Concannon M; Navon D; Wang J; Ea I; Groveas K; Campbell C; Albertson RC
    Mol Ecol; 2016 Dec; 25(24):6012-6023. PubMed ID: 27516345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphometric and Genetic Description of Trophic Adaptations in Cichlid Fishes.
    DeLorenzo L; DeBrock V; Carmona Baez A; Ciccotto PJ; Peterson EN; Stull C; Roberts NB; Roberts RB; Powder KE
    Biology (Basel); 2022 Aug; 11(8):. PubMed ID: 36009792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A compendium of developmental gene expression in Lake Malawi cichlid fishes.
    Bloomquist RF; Fowler TE; Sylvester JB; Miro RJ; Streelman JT
    BMC Dev Biol; 2017 Feb; 17(1):3. PubMed ID: 28158974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Are developmental shifts the main driver of phenotypic evolution in Diplodus spp. (Perciformes: Sparidae)?
    Colangelo P; Ventura D; Piras P; Pagani Guazzugli Bonaiuti J; Ardizzone G
    BMC Evol Biol; 2019 May; 19(1):106. PubMed ID: 31113358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of a unique predatory feeding apparatus: functional anatomy, development and a genetic locus for jaw laterality in Lake Tanganyika scale-eating cichlids.
    Stewart TA; Albertson RC
    BMC Biol; 2010 Jan; 8():8. PubMed ID: 20102595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geometric morphometric analyses provide evidence for the adaptive character of the Tanganyikan cichlid fish radiations.
    Clabaut C; Bunje PM; Salzburger W; Meyer A
    Evolution; 2007 Mar; 61(3):560-78. PubMed ID: 17348920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Divergent ontogenies of trophic morphology in two closely related haplochromine cichlids.
    Santos-Santos JH; Audenaert L; Verheyen E; Adriaens D
    J Morphol; 2015 Jul; 276(7):860-71. PubMed ID: 25820599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wnt signalling underlies the evolution of new phenotypes and craniofacial variability in Lake Malawi cichlids.
    Parsons KJ; Trent Taylor A; Powder KE; Albertson RC
    Nat Commun; 2014 Apr; 5():3629. PubMed ID: 24699776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterochronic shifts and conserved embryonic shape underlie crocodylian craniofacial disparity and convergence.
    Morris ZS; Vliet KA; Abzhanov A; Pierce SE
    Proc Biol Sci; 2019 Feb; 286(1897):20182389. PubMed ID: 30963831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epigenetics and the evolution of form: Experimental manipulation of a chromatin modification causes species-specific changes to the craniofacial skeleton.
    DeLorenzo L; Powder KE
    Evol Dev; 2024 Jan; 26(1):e12461. PubMed ID: 37850843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ontogeny and social context regulate the circadian activity patterns of Lake Malawi cichlids.
    Lloyd E; Rastogi A; Holtz N; Aaronson B; Craig Albertson R; Keene AC
    J Comp Physiol B; 2024 Jun; 194(3):299-313. PubMed ID: 37910192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic and developmental basis of cichlid trophic diversity.
    Albertson RC; Kocher TD
    Heredity (Edinb); 2006 Sep; 97(3):211-21. PubMed ID: 16835594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PHENOTYPIC PLASTICITY AND HETEROCHRONY IN CICHLASOMA MANAGUENSE (PISCES, CICHLIDAE) AND THEIR IMPLICATIONS FOR SPECIATION IN CICHLID FISHES.
    Meyer A
    Evolution; 1987 Nov; 41(6):1357-1369. PubMed ID: 28563603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phylogenomic analysis of Lake Malawi cichlid fishes: Further evidence that the three-stage model of diversification does not fit.
    Hulsey CD; Zheng J; Faircloth BC; Meyer A; Alfaro ME
    Mol Phylogenet Evol; 2017 Sep; 114():40-48. PubMed ID: 28579077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.