These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 26225641)

  • 1. Enzyme Selectivity of HIV Reverse Transcriptase: Conformations, Ligands, and Free Energy Partition.
    Kirmizialtin S; Johnson KA; Elber R
    J Phys Chem B; 2015 Sep; 119(35):11513-26. PubMed ID: 26225641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How conformational dynamics of DNA polymerase select correct substrates: experiments and simulations.
    Kirmizialtin S; Nguyen V; Johnson KA; Elber R
    Structure; 2012 Apr; 20(4):618-27. PubMed ID: 22483109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic and thermodynamic analysis defines roles for two metal ions in DNA polymerase specificity and catalysis.
    Gong S; Kirmizialtin S; Chang A; Mayfield JE; Zhang YJ; Johnson KA
    J Biol Chem; 2021; 296():100184. PubMed ID: 33310704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mismatch-induced conformational distortions in polymerase beta support an induced-fit mechanism for fidelity.
    Arora K; Beard WA; Wilson SH; Schlick T
    Biochemistry; 2005 Oct; 44(40):13328-41. PubMed ID: 16201758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pyrophosphate Release in the Protein HIV Reverse Transcriptase.
    Atis M; Johnson KA; Elber R
    J Phys Chem B; 2017 Oct; 121(41):9557-9565. PubMed ID: 28926712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing nonnucleoside inhibitor-induced active-site distortion in HIV-1 reverse transcriptase by transient kinetic analyses.
    Xia Q; Radzio J; Anderson KS; Sluis-Cremer N
    Protein Sci; 2007 Aug; 16(8):1728-37. PubMed ID: 17656585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In silico evidence for DNA polymerase-beta's substrate-induced conformational change.
    Arora K; Schlick T
    Biophys J; 2004 Nov; 87(5):3088-99. PubMed ID: 15507687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active site dynamics and combined quantum mechanics/molecular mechanics (QM/MM) modelling of a HIV-1 reverse transcriptase/DNA/dTTP complex.
    Rungrotmongkol T; Mulholland AJ; Hannongbua S
    J Mol Graph Model; 2007 Jul; 26(1):1-13. PubMed ID: 17046299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extending molecular dynamics time scales with milestoning: example of complex kinetics in a solvated peptide.
    West AM; Elber R; Shalloway D
    J Chem Phys; 2007 Apr; 126(14):145104. PubMed ID: 17444753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How does Pin1 catalyze the cis-trans prolyl peptide bond isomerization? A QM/MM and mean reaction force study.
    Vöhringer-Martinez E; Duarte F; Toro-Labbé A
    J Phys Chem B; 2012 Nov; 116(43):12972-9. PubMed ID: 23030417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thumbs down for HIV: domain level rearrangements do occur in the NNRTI-bound HIV-1 reverse transcriptase.
    Wright DW; Sadiq SK; De Fabritiis G; Coveney PV
    J Am Chem Soc; 2012 Aug; 134(31):12885-8. PubMed ID: 22827470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the Reaction Mechanism of HIV Reverse Transcriptase with a Nucleotide Substrate.
    Wang H; Huang N; Dangerfield T; Johnson KA; Gao J; Elber R
    J Phys Chem B; 2020 May; 124(21):4270-4283. PubMed ID: 32364738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-dimensional reaction free energy surfaces of catalytic reaction: effects of protein conformational dynamics on enzyme catalysis.
    Min W; Xie XS; Bagchi B
    J Phys Chem B; 2008 Jan; 112(2):454-66. PubMed ID: 18085768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature-dependent equilibrium between the open and closed conformation of the p66 subunit of HIV-1 reverse transcriptase revealed by site-directed spin labelling.
    Kensch O; Restle T; Wöhrl BM; Goody RS; Steinhoff HJ
    J Mol Biol; 2000 Aug; 301(4):1029-39. PubMed ID: 10966802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzyme dynamics from NMR spectroscopy.
    Palmer AG
    Acc Chem Res; 2015 Feb; 48(2):457-65. PubMed ID: 25574774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. QM/MM modelling of ketosteroid isomerase reactivity indicates that active site closure is integral to catalysis.
    van der Kamp MW; Chaudret R; Mulholland AJ
    FEBS J; 2013 Jul; 280(13):3120-31. PubMed ID: 23356661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonequilibrium Relaxation of Conformational Dynamics Facilitates Catalytic Reaction in an Elastic Network Model of T7 DNA Polymerase.
    Zhao ZW; Xie XS; Ge H
    J Phys Chem B; 2016 Mar; 120(11):2869-77. PubMed ID: 26918464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation on an orientation and interaction energy of the water molecule in the HIV-1 reverse transcriptase active site by quantum chemical calculations.
    Kuno M; Palangsuntikul R; Hannongbua S
    J Chem Inf Comput Sci; 2003; 43(5):1584-90. PubMed ID: 14502493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The importance of ensemble averaging in enzyme kinetics.
    Masgrau L; Truhlar DG
    Acc Chem Res; 2015 Feb; 48(2):431-8. PubMed ID: 25539028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring transition pathway and free-energy profile of large-scale protein conformational change by combining normal mode analysis and umbrella sampling molecular dynamics.
    Wang J; Shao Q; Xu Z; Liu Y; Yang Z; Cossins BP; Jiang H; Chen K; Shi J; Zhu W
    J Phys Chem B; 2014 Jan; 118(1):134-43. PubMed ID: 24350625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.