These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 26225932)

  • 1. Molecular control of stress transmission in the microtubule cytoskeleton.
    Lopez BJ; Valentine MT
    Biochim Biophys Acta; 2015 Nov; 1853(11 Pt B):3015-24. PubMed ID: 26225932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanics of biological networks: from the cell cytoskeleton to connective tissue.
    Pritchard RH; Huang YY; Terentjev EM
    Soft Matter; 2014 Mar; 10(12):1864-84. PubMed ID: 24652375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Buckling of a single microtubule by optical trapping forces: direct measurement of microtubule rigidity.
    Kurachi M; Hoshi M; Tashiro H
    Cell Motil Cytoskeleton; 1995; 30(3):221-8. PubMed ID: 7758138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexural rigidity of individual microtubules measured by a buckling force with optical traps.
    Kikumoto M; Kurachi M; Tosa V; Tashiro H
    Biophys J; 2006 Mar; 90(5):1687-96. PubMed ID: 16339879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymerization force driven buckling of microtubule bundles determines the wavelength of patterns formed in tubulin solutions.
    Guo Y; Liu Y; Tang JX; Valles JM
    Phys Rev Lett; 2007 May; 98(19):198103. PubMed ID: 17677665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-monotonic dependence of stiffness on actin crosslinking in cytoskeleton composites.
    Francis ML; Ricketts SN; Farhadi L; Rust MJ; Das M; Ross JL; Robertson-Anderson RM
    Soft Matter; 2019 Nov; 15(44):9056-9065. PubMed ID: 31647488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bond breaking dynamics in semiflexible networks under load.
    Vaca C; Shlomovitz R; Yang Y; Valentine MT; Levine AJ
    Soft Matter; 2015 Jun; 11(24):4899-911. PubMed ID: 26012737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature dependence of the flexural rigidity of single microtubules.
    Kawaguchi K; Ishiwata S; Yamashita T
    Biochem Biophys Res Commun; 2008 Feb; 366(3):637-42. PubMed ID: 18068120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Length dependence of the rigidity of microtubules in small networks.
    Sharma A; Vershinin M
    Biochem Biophys Res Commun; 2020 Aug; 529(2):303-305. PubMed ID: 32703427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determining the structure-mechanics relationships of dense microtubule networks with confocal microscopy and magnetic tweezers-based microrheology.
    Yang Y; Valentine MT
    Methods Cell Biol; 2013; 115():75-96. PubMed ID: 23973067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A bending mode analysis for growing microtubules: evidence for a velocity-dependent rigidity.
    Janson ME; Dogterom M
    Biophys J; 2004 Oct; 87(4):2723-36. PubMed ID: 15454464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Buckling, stiffening, and negative dissipation in the dynamics of a biopolymer in an active medium.
    Kikuchi N; Ehrlicher A; Koch D; Käs JA; Ramaswamy S; Rao M
    Proc Natl Acad Sci U S A; 2009 Nov; 106(47):19776-9. PubMed ID: 19901332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wave propagation in protein microtubules modeled as orthotropic elastic shells including transverse shear deformations.
    Daneshmand F; Ghavanloo E; Amabili M
    J Biomech; 2011 Jul; 44(10):1960-6. PubMed ID: 21632054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomolecular motor modulates mechanical property of microtubule.
    Kabir AM; Inoue D; Hamano Y; Mayama H; Sada K; Kakugo A
    Biomacromolecules; 2014 May; 15(5):1797-805. PubMed ID: 24697688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mechanics model of microtubule buckling in living cells.
    Li T
    J Biomech; 2008; 41(8):1722-9. PubMed ID: 18433758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microrheology of microtubule solutions and actin-microtubule composite networks.
    Pelletier V; Gal N; Fournier P; Kilfoil ML
    Phys Rev Lett; 2009 May; 102(18):188303. PubMed ID: 19518917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical stress induced mechanism of microtubule catastrophes.
    Hunyadi V; Chrétien D; Jánosi IM
    J Mol Biol; 2005 May; 348(4):927-38. PubMed ID: 15843023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metastability of microtubules induced by competing internal forces.
    Hunyadi V; Jánosi IM
    Biophys J; 2007 May; 92(9):3092-7. PubMed ID: 17307833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of prestress and architecture of the cytoskeleton and deformability of cytoskeletal filaments in mechanics of adherent cells: a quantitative analysis.
    Stamenović D; Coughlin MF
    J Theor Biol; 1999 Nov; 201(1):63-74. PubMed ID: 10534436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature-dependent elasticity of microtubules.
    Kis A; Kasas S; Kulik AJ; Catsicas S; Forró L
    Langmuir; 2008 Jun; 24(12):6176-81. PubMed ID: 18494514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.