BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 26226188)

  • 1. A Quasi-relativistic Density Functional Theory Study of the Actinyl(VI, V) (An = U, Np, Pu) Complexes with a Six-Membered Macrocycle Containing Pyrrole, Pyridine, and Furan Subunits.
    Lan JH; Wang CZ; Wu QY; Wang SA; Feng YX; Zhao YL; Chai ZF; Shi WQ
    J Phys Chem A; 2015 Aug; 119(34):9178-88. PubMed ID: 26226188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum chemistry study of uranium(VI), neptunium(V), and plutonium(IV,VI) complexes with preorganized tetradentate phenanthrolineamide ligands.
    Xiao CL; Wu QY; Wang CZ; Zhao YL; Chai ZF; Shi WQ
    Inorg Chem; 2014 Oct; 53(20):10846-53. PubMed ID: 25268674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gas-phase uranyl, neptunyl, and plutonyl: hydration and oxidation studied by experiment and theory.
    Rios D; Michelini MC; Lucena AF; Marçalo J; Bray TH; Gibson JK
    Inorg Chem; 2012 Jun; 51(12):6603-14. PubMed ID: 22656318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational Study of Actinyl Ion Complexation with Dipyriamethyrin Macrocyclic Ligands.
    Varathan E; Gao Y; Schreckenbach G
    J Phys Chem A; 2021 Feb; 125(4):920-932. PubMed ID: 33476158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relativistic DFT and experimental studies of mono- and bis-actinyl complexes of an expanded Schiff-base polypyrrole macrocycle.
    Zheng XJ; Bell NL; Stevens CJ; Zhong YX; Schreckenbach G; Arnold PL; Love JB; Pan QJ
    Dalton Trans; 2016 Oct; 45(40):15910-15921. PubMed ID: 27373562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental and theoretical studies on the fragmentation of gas-phase uranyl-, neptunyl-, and plutonyl-diglycolamide complexes.
    Gong Y; Hu HS; Rao L; Li J; Gibson JK
    J Phys Chem A; 2013 Oct; 117(40):10544-50. PubMed ID: 24015813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dinuclear Complexes of Uranyl, Neptunyl, and Plutonyl: Structures and Oxidation States Revealed by Experiment and Theory.
    Jian T; Vasiliu M; Lee ZR; Zhang Z; Dixon DA; Gibson JK
    J Phys Chem A; 2022 Oct; 126(42):7695-7708. PubMed ID: 36251495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Periodic Trends in the Stabilization of Actinyls in Their Higher Oxidation States Using Pyrrophen Ligands.
    Jennifer G A; Gao Y; Schreckenbach G; Varathan E
    Inorg Chem; 2023 May; 62(18):6920-6933. PubMed ID: 37104857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the interactions of neptunium and plutonium ions with graphene oxide: scalar-relativistic DFT investigations.
    Wu QY; Lan JH; Wang CZ; Zhao YL; Chai ZF; Shi WQ
    J Phys Chem A; 2014 Nov; 118(44):10273-80. PubMed ID: 25302669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of anions and reaction conditions in the preparation of uranium(VI), neptunium(VI), and plutonium(VI) borates.
    Wang S; Villa EM; Diwu J; Alekseev EV; Depmeier W; Albrecht-Schmitt TE
    Inorg Chem; 2011 Mar; 50(6):2527-33. PubMed ID: 21291194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relativistic density functional theory study of dioxoactinide(VI) and -(V) complexation with alaskaphyrin and related Schiff-base macrocyclic ligands.
    Shamov GA; Schreckenbach G
    J Phys Chem A; 2006 Aug; 110(30):9486-99. PubMed ID: 16869700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical actinide molecular science.
    Schreckenbach G; Shamov GA
    Acc Chem Res; 2010 Jan; 43(1):19-29. PubMed ID: 19719099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mechanism of the reduction of [AnO2]2+ (An = U, Np, Pu) in aqueous solution, and by Fe(II) containing proteins and mineral surfaces, probed by DFT calculations.
    Sundararajan M; Assary RS; Hillier IH; Vaughan DJ
    Dalton Trans; 2011 Nov; 40(42):11156-63. PubMed ID: 21837318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the Interaction Natures in Plutonyl (VI) Complexes with Topological Analyses of Electron Density.
    Du J; Sun X; Jiang G
    Int J Mol Sci; 2016 Apr; 17(4):414. PubMed ID: 27077844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Which density functional should be used to study actinyl complexes?
    Austin JP; Burton NA; Hillier IH; Sundararajan M; Vincent MA
    Phys Chem Chem Phys; 2009 Feb; 11(8):1143-5. PubMed ID: 19209355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crown ether inclusion complexes of the early actinide elements, [AnO2(18-crown-6)]n+, An = U, Np, Pu and n = 1, 2: a relativistic density functional study.
    Shamov GA; Schreckenbach G; Martin RL; Hay PJ
    Inorg Chem; 2008 Mar; 47(5):1465-75. PubMed ID: 18225857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selectivity of the highly preorganized tetradentate ligand 2,9-di(pyrid-2-yl)-1,10-phenanthroline for metal ions in aqueous solution, including lanthanide(III) ions and the uranyl(VI) cation.
    Carolan AN; Cockrell GM; Williams NJ; Zhang G; VanDerveer DG; Lee HS; Thummel RP; Hancock RD
    Inorg Chem; 2013 Jan; 52(1):15-27. PubMed ID: 23231454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron-Transfer-Enhanced Cation-Cation Interactions in Homo- and Heterobimetallic Actinide Complexes: A Relativistic Density Functional Theory Study.
    Zheng M; Chen FY; Tian JN; Pan QJ
    Inorg Chem; 2018 Apr; 57(7):3893-3902. PubMed ID: 29561147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gas-phase coordination complexes of dipositive plutonyl, PuO2(2+): chemical diversity across the actinyl series.
    Rios D; Rutkowski PX; Van Stipdonk MJ; Gibson JK
    Inorg Chem; 2011 Jun; 50(11):4781-90. PubMed ID: 21517017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational density functional study of polypyrrolic macrocycles: analysis of actinyl-oxo to 3d transition metal bonding.
    Berard JJ; Schreckenbach G; Arnold PL; Patel D; Love JB
    Inorg Chem; 2008 Dec; 47(24):11583-92. PubMed ID: 19006299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.