BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 26226279)

  • 1. Syntheses and Biological Evaluation of Costunolide, Parthenolide, and Their Fluorinated Analogues.
    Yang ZJ; Ge WZ; Li QY; Lu Y; Gong JM; Kuang BJ; Xi X; Wu H; Zhang Q; Chen Y
    J Med Chem; 2015 Sep; 58(17):7007-20. PubMed ID: 26226279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Total syntheses of parthenolide and its analogues with macrocyclic stereocontrol.
    Long J; Zhang SF; Wang PP; Zhang XM; Yang ZJ; Zhang Q; Chen Y
    J Med Chem; 2014 Aug; 57(16):7098-112. PubMed ID: 25102048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorinated amino-derivatives of the sesquiterpene lactone, parthenolide, as (19)f NMR probes in deuterium-free environments.
    Woods JR; Mo H; Bieberich AA; Alavanja T; Colby DA
    J Med Chem; 2011 Nov; 54(22):7934-41. PubMed ID: 22029741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First enantioselective total synthesis and configurational assignments of suberosenone and suberosanone as potential antitumor agents.
    Kousara M; Ferry A; Le Bideau F; Serré KL; Chataigner I; Morvan E; Dubois J; Chéron M; Dumas F
    Chem Commun (Camb); 2015 Feb; 51(16):3458-61. PubMed ID: 25626720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. (+)- and (-)-mutisianthol: first total synthesis, absolute configuration, and antitumor activity.
    Bianco GG; Ferraz HM; Costa AM; Costa-Lotufo LV; Pessoa C; de Moraes MO; Schrems MG; Pfaltz A; Silva LF
    J Org Chem; 2009 Mar; 74(6):2561-6. PubMed ID: 19231874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and antileukemic activities of C1-C10-modified parthenolide analogues.
    Kempema AM; Widen JC; Hexum JK; Andrews TE; Wang D; Rathe SK; Meece FA; Noble KE; Sachs Z; Largaespada DA; Harki DA
    Bioorg Med Chem; 2015 Aug; 23(15):4737-4745. PubMed ID: 26088334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. "Click" reaction mediated synthesis of costunolide and dehydrocostuslactone derivatives and evaluation of their cytotoxic activity.
    Pavan Kumar Ch; Devi A; Ashok Yadav P; Rao Vadaparthi R; Shankaraiah G; Sowjanya P; Jain N; Suresh Babu K
    J Asian Nat Prod Res; 2016 Nov; 18(11):1063-78. PubMed ID: 27329166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and anti-acute myeloid leukemia activity of C-14 modified parthenolide derivatives.
    Yang Z; Kuang B; Kang N; Ding Y; Ge W; Lian L; Gao Y; Wei Y; Chen Y; Zhang Q
    Eur J Med Chem; 2017 Feb; 127():296-304. PubMed ID: 28068601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First enantiospecific syntheses of marine merosesquiterpenes neopetrosiquinones a and B: evaluation of biological activity.
    Chayboun I; Boulifa E; Mansour AI; Rodriguez-Serrano F; Carrasco E; Alvarez PJ; Chahboun R; Alvarez-Manzaneda E
    J Nat Prod; 2015 May; 78(5):1026-36. PubMed ID: 25906329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytotoxic activity of some natural and synthetic sesquiterpene lactones.
    Bruno M; Rosselli S; Maggio A; Raccuglia RA; Bastow KF; Wu CC; Lee KH
    Planta Med; 2005 Dec; 71(12):1176-8. PubMed ID: 16395659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new sesquiterpene lactone from the roots of Saussurea lappa: structure-anticancer activity study.
    Robinson A; Kumar TV; Sreedhar E; Naidu VG; Krishna SR; Babu KS; Srinivas PV; Rao JM
    Bioorg Med Chem Lett; 2008 Jul; 18(14):4015-7. PubMed ID: 18579374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of 13-amino costunolide derivatives as anticancer agents.
    Srivastava SK; Abraham A; Bhat B; Jaggi M; Singh AT; Sanna VK; Singh G; Agarwal SK; Mukherjee R; Burman AC
    Bioorg Med Chem Lett; 2006 Aug; 16(16):4195-9. PubMed ID: 16766184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of anti-invasive activity of parthenolide and 3-isopropyl-2-methyl-4-methyleneisoxazolidin-5-one (MZ-6)--a new compound with α-methylene-γ-lactone motif--on two breast cancer cell lines.
    Wyrębska A; Gach K; Szemraj J; Szewczyk K; Hrabec E; Koszuk J; Janecki T; Janecka A
    Chem Biol Drug Des; 2012 Jan; 79(1):112-20. PubMed ID: 21992414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antitumor activity of novel deoxoartemisinin monomers, dimers, and trimer.
    Jung M; Lee S; Ham J; Lee K; Kim H; Kim SK
    J Med Chem; 2003 Mar; 46(6):987-94. PubMed ID: 12620075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stereoselective Synthesis of Xylodonin A and 22-Hydroxyxylodonin A and Discovery of Analogues with Cytotoxic Activity.
    Wu YC; Xu GS; Li HJ; Wu YC
    J Nat Prod; 2024 Apr; 87(4):884-892. PubMed ID: 38408342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tridemethylisovelleral, a potent cytotoxic agent.
    Aujard I; Röme D; Arzel E; Johansson M; de Vos D; Sterner O
    Bioorg Med Chem; 2005 Nov; 13(22):6145-50. PubMed ID: 16055337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and synthesis of C35-fluorinated solamins and their growth inhibitory activities against human cancer cell lines.
    Kojima N; Suga Y; Hayashi H; Yamori T; Yoshimitsu T; Tanaka T
    Bioorg Med Chem Lett; 2011 Oct; 21(19):5745-9. PubMed ID: 21875800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and biological evaluation of antitumor-active arglabin derivatives.
    Csuk R; Heinold A; Siewert B; Schwarz S; Barthel A; Kluge R; Ströhl D
    Arch Pharm (Weinheim); 2012 Mar; 345(3):215-22. PubMed ID: 21997763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anticancer activity profiling of parthenolide analogs generated via P450-mediated chemoenzymatic synthesis.
    Alwaseem H; Frisch BJ; Fasan R
    Bioorg Med Chem; 2018 Apr; 26(7):1365-1373. PubMed ID: 28826596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of dual-action parthenolide prodrugs as potent anticancer agents.
    Taleghani A; Nasseri MA; Iranshahi M
    Bioorg Chem; 2017 Apr; 71():128-134. PubMed ID: 28215600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.