These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 26226337)

  • 21. Photodynamic therapy based on combined use of 5-aminolevulinic acid with a pheophorbide-a derivative for murine tumors.
    Jin ZH; Miyoshi N; Ishiguro K; Takaoka K; Udagawa T; Tajiri H; Ueda K; Fukuda M; Kumakiri M
    In Vivo; 2000; 14(4):529-33. PubMed ID: 10945169
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pheophorbide-a conjugates with cancer-targeting moieties for targeted photodynamic cancer therapy.
    You H; Yoon HE; Jeong PH; Ko H; Yoon JH; Kim YC
    Bioorg Med Chem; 2015 Apr; 23(7):1453-62. PubMed ID: 25753328
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multiepitope HER2 targeting enhances photoimmunotherapy of HER2-overexpressing cancer cells with pyropheophorbide-a immunoconjugates.
    Savellano MD; Pogue BW; Hoopes PJ; Vitetta ES; Paulsen KD
    Cancer Res; 2005 Jul; 65(14):6371-9. PubMed ID: 16024640
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In Vivo Near-Infrared Photodynamic Therapy Based on Targeted Upconversion Nanoparticles.
    Zhou A; Wei Y; Chen Q; Xing D
    J Biomed Nanotechnol; 2015 Nov; 11(11):2003-10. PubMed ID: 26554158
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pheophorbide a-mediated photodynamic therapy induces apoptotic cell death in murine oral squamous cell carcinoma in vitro and in vivo.
    Ahn MY; Kwon SM; Kim YC; Ahn SG; Yoon JH
    Oncol Rep; 2012 Jun; 27(6):1772-8. PubMed ID: 22470106
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Radiolabeling,
    Er O; Tuncel A; Ocakoglu K; Ince M; Kolatan EH; Yilmaz O; Aktaş S; Yurt F
    Mol Pharm; 2020 Jul; 17(7):2648-2659. PubMed ID: 32412765
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chlorophyll-a analogues conjugated with aminobenzyl-DTPA as potential bifunctional agents for magnetic resonance imaging and photodynamic therapy.
    Li G; Slansky A; Dobhal MP; Goswami LN; Graham A; Chen Y; Kanter P; Alberico RA; Spernyak J; Morgan J; Mazurchuk R; Oseroff A; Grossman Z; Pandey RK
    Bioconjug Chem; 2005; 16(1):32-42. PubMed ID: 15656573
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photodynamic therapy of Pheophorbide a inhibits the proliferation of human breast tumour via both caspase-dependent and -independent apoptotic pathways in in vitro and in vivo models.
    Hoi SW; Wong HM; Chan JY; Yue GG; Tse GM; Law BK; Fong WP; Fung KP
    Phytother Res; 2012 May; 26(5):734-42. PubMed ID: 22072524
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The activity of G-ROS and the predominant role of Type II reaction in the photodynamic therapy using 9-hydroxypheophorbide-α for HeLa cell lines.
    Ahn JC; Chung PS
    Gen Physiol Biophys; 2012 Sep; 31(3):343-50. PubMed ID: 23047947
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Therapeutic effect of photodynamic therapy using Na-pheophorbide a on osteomyelitis models in rats.
    Goto B; Iriuchishima T; Horaguchi T; Tokuhashi Y; Nagai Y; Harada T; Saito A; Aizawa S
    Photomed Laser Surg; 2011 Mar; 29(3):183-9. PubMed ID: 21194297
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photosensitizer conjugated iron oxide nanoparticles for simultaneous in vitro magneto-fluorescent imaging guided photodynamic therapy.
    Nafiujjaman M; Revuri V; Nurunnabi M; Cho KJ; Lee YK
    Chem Commun (Camb); 2015 Apr; 51(26):5687-90. PubMed ID: 25715169
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An in vivo quantitative structure-activity relationship for a congeneric series of pyropheophorbide derivatives as photosensitizers for photodynamic therapy.
    Henderson BW; Bellnier DA; Greco WR; Sharma A; Pandey RK; Vaughan LA; Weishaupt KR; Dougherty TJ
    Cancer Res; 1997 Sep; 57(18):4000-7. PubMed ID: 9307285
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bioreducible branched polyethyleneimine derivatives physically loaded with hydrophobic pheophorbide A: preparation, characterization, and light-induced cytotoxicity.
    Cho H; Li L; Bae YH; Huh KM; Kang HC
    Macromol Biosci; 2014 Oct; 14(10):1483-94. PubMed ID: 25130538
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A photodynamic bifunctional conjugate for prostate cancer: an in vitro mechanistic study.
    Rapozzi V; Varchi G; Della Pietra E; Ferroni C; Xodo LE
    Invest New Drugs; 2017 Feb; 35(1):115-123. PubMed ID: 27726093
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A study on the photodynamic properties of chlorophyll derivatives using human hepatocellular carcinoma cells.
    Li WT; Tsao HW; Chen YY; Cheng SW; Hsu YC
    Photochem Photobiol Sci; 2007 Dec; 6(12):1341-8. PubMed ID: 18046491
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of NF-κB/Snail/RKIP loop in the response of tumor cells to photodynamic therapy.
    Rapozzi V; Umezawa K; Xodo LE
    Lasers Surg Med; 2011 Sep; 43(7):575-85. PubMed ID: 22057485
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Subcellular localization patterns and their relationship to photodynamic activity of pyropheophorbide-a derivatives.
    MacDonald IJ; Morgan J; Bellnier DA; Paszkiewicz GM; Whitaker JE; Litchfield DJ; Dougherty TJ
    Photochem Photobiol; 1999 Nov; 70(5):789-97. PubMed ID: 10568171
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pyropheophorbide A and c(RGDyK) comodified chitosan-wrapped upconversion nanoparticle for targeted near-infrared photodynamic therapy.
    Zhou A; Wei Y; Wu B; Chen Q; Xing D
    Mol Pharm; 2012 Jun; 9(6):1580-9. PubMed ID: 22533630
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Antitumor effect of photodynamic therapy with a novel targeted photosensitizer on cervical carcinoma.
    Li PX; Mu JH; Xiao HL; Li DH
    Oncol Rep; 2015 Jan; 33(1):125-32. PubMed ID: 25376180
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dark and Photoinduced Cytotoxic Activity of the New Chlorophyll-a Derivatives with Oligoethylene Glycol Substituents on the Periphery of Their Macrocycles.
    Pylina YI; Shadrin DM; Shevchenko OG; Startseva OM; Velegzhaninov IO; Belykh DV; Velegzhaninov IO
    Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28067798
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.