These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes. Borazjani I; Sotiropoulos F J Exp Biol; 2008 May; 211(Pt 10):1541-58. PubMed ID: 18456881 [TBL] [Abstract][Full Text] [Related]
3. Effects of non-uniform stiffness on the swimming performance of a passively-flexing, fish-like foil model. Lucas KN; Thornycroft PJ; Gemmell BJ; Colin SP; Costello JH; Lauder GV Bioinspir Biomim; 2015 Oct; 10(5):056019. PubMed ID: 26447541 [TBL] [Abstract][Full Text] [Related]
4. Large-amplitude undulatory swimming near a wall. Fernández-Prats R; Raspa V; Thiria B; Huera-Huarte F; Godoy-Diana R Bioinspir Biomim; 2015 Jan; 10(1):016003. PubMed ID: 25561330 [TBL] [Abstract][Full Text] [Related]
5. Numerical investigation of the hydrodynamics of anguilliform swimming in the transitional and inertial flow regimes. Borazjani I; Sotiropoulos F J Exp Biol; 2009 Feb; 212(Pt 4):576-92. PubMed ID: 19181905 [TBL] [Abstract][Full Text] [Related]
6. The hydrodynamic advantages of synchronized swimming in a rectangular pattern. Daghooghi M; Borazjani I Bioinspir Biomim; 2015 Oct; 10(5):056018. PubMed ID: 26447493 [TBL] [Abstract][Full Text] [Related]
7. Effect of caudal fin flexibility on the propulsive efficiency of a fish-like swimmer. Bergmann M; Iollo A; Mittal R Bioinspir Biomim; 2014 Sep; 9(4):046001. PubMed ID: 25252883 [TBL] [Abstract][Full Text] [Related]
8. Measurement of propulsive power and evaluation of propulsive performance from the wake of a self-propelled vehicle. Krueger PS Bioinspir Biomim; 2006 Dec; 1(4):S49-56. PubMed ID: 17671318 [TBL] [Abstract][Full Text] [Related]
9. Combined effect of couple stresses and heat and mass transfer on peristaltic flow with slip conditions in a tube. Sobh AM Proc Inst Mech Eng H; 2013 Oct; 227(10):1073-82. PubMed ID: 23851658 [TBL] [Abstract][Full Text] [Related]
10. Hydrodynamic investigation of a self-propelled robotic fish based on a force-feedback control method. Wen L; Wang TM; Wu GH; Liang JH Bioinspir Biomim; 2012 Sep; 7(3):036012. PubMed ID: 22556135 [TBL] [Abstract][Full Text] [Related]
11. Passive mechanical models of fish caudal fins: effects of shape and stiffness on self-propulsion. Feilich KL; Lauder GV Bioinspir Biomim; 2015 Apr; 10(3):036002. PubMed ID: 25879846 [TBL] [Abstract][Full Text] [Related]
12. The boundary layer of swimming fish. Anderson EJ; McGillis WR; Grosenbaugh MA J Exp Biol; 2001 Jan; 204(Pt 1):81-102. PubMed ID: 11104713 [TBL] [Abstract][Full Text] [Related]
13. Propulsion mechanisms for Leidenfrost solids on ratchets. Baier T; Dupeux G; Herbert S; Hardt S; Quéré D Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):021001. PubMed ID: 23496452 [TBL] [Abstract][Full Text] [Related]
14. Fluid dynamics of moving fish in a two-dimensional multiparticle collision dynamics model. Reid DA; Hildenbrandt H; Padding JT; Hemelrijk CK Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021901. PubMed ID: 22463238 [TBL] [Abstract][Full Text] [Related]
15. Optimal propulsive flapping in Stokes flows. Was L; Lauga E Bioinspir Biomim; 2014 Mar; 9(1):016001. PubMed ID: 24343130 [TBL] [Abstract][Full Text] [Related]
16. Renewable fluid dynamic energy derived from aquatic animal locomotion. Dabiri JO Bioinspir Biomim; 2007 Sep; 2(3):L1-3. PubMed ID: 17848785 [TBL] [Abstract][Full Text] [Related]
17. Optimally efficient swimming in hyper-redundant mechanisms: control, design, and energy recovery. Wiens AJ; Nahon M Bioinspir Biomim; 2012 Dec; 7(4):046016. PubMed ID: 23135166 [TBL] [Abstract][Full Text] [Related]
18. Propulsive performance of a body with a traveling-wave surface. Tian FB; Lu XY; Luo H Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016304. PubMed ID: 23005522 [TBL] [Abstract][Full Text] [Related]
19. Effect of vehicle configuration on the performance of a submersible pulsed-jet vehicle at intermediate Reynolds number. Nichols JT; Krueger PS Bioinspir Biomim; 2012 Sep; 7(3):036010. PubMed ID: 22549087 [TBL] [Abstract][Full Text] [Related]
20. The effect of Reynolds number on the propulsive efficiency of a biomorphic pulsed-jet underwater vehicle. Moslemi AA; Krueger PS Bioinspir Biomim; 2011 Jun; 6(2):026001. PubMed ID: 21364256 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]