These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 26226349)
21. Study of flexible fin and compliant joint stiffness on propulsive performance: theory and experiments. Kancharala AK; Philen MK Bioinspir Biomim; 2014 Sep; 9(3):036011. PubMed ID: 24737004 [TBL] [Abstract][Full Text] [Related]
22. Fin Ray Stiffness and Fin Morphology Control Ribbon-Fin-Based Propulsion. Liu H; Taylor B; Curet OM Soft Robot; 2017 Jun; 4(2):103-116. PubMed ID: 29182095 [TBL] [Abstract][Full Text] [Related]
23. Mathematical modelling of peristaltic propulsion of viscoplastic bio-fluids. Tripathi D; Bég OA Proc Inst Mech Eng H; 2014 Jan; 228(1):67-88. PubMed ID: 24292011 [TBL] [Abstract][Full Text] [Related]
24. Intermittency of energy in rapid granular shear flows. Jalali P; Li M; Ritvanen J; Sarkomaa P Chaos; 2003 Jun; 13(2):434-43. PubMed ID: 12777106 [TBL] [Abstract][Full Text] [Related]
25. Length effects of a built-in flapping flat plate on the flow over a traveling wavy foil. Liu N; Peng Y; Lu X Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063019. PubMed ID: 25019891 [TBL] [Abstract][Full Text] [Related]
28. Fins improve the swimming performance of fish sperm: a hydrodynamic analysis of the Siberian sturgeon Acipenser baerii. Gillies EA; Bondarenko V; Cosson J; Pacey AA Cytoskeleton (Hoboken); 2013 Feb; 70(2):85-100. PubMed ID: 23233331 [TBL] [Abstract][Full Text] [Related]
29. A bio-inspired study on tidal energy extraction with flexible flapping wings. Liu W; Xiao Q; Cheng F Bioinspir Biomim; 2013 Sep; 8(3):036011. PubMed ID: 23981650 [TBL] [Abstract][Full Text] [Related]
30. Hydrodynamic drag-force measurement and slip length on microstructured surfaces. Maali A; Pan Y; Bhushan B; Charlaix E Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066310. PubMed ID: 23005209 [TBL] [Abstract][Full Text] [Related]
31. Swimming at low Reynolds number in fluids with odd, or Hall, viscosity. Lapa MF; Hughes TL Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):043019. PubMed ID: 24827344 [TBL] [Abstract][Full Text] [Related]
32. Dynamic force patterns of an undulatory microswimmer. Schulman RD; Backholm M; Ryu WS; Dalnoki-Veress K Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):050701. PubMed ID: 25353731 [TBL] [Abstract][Full Text] [Related]
33. Biological implications of the hydrodynamics of swimming at or near the surface and in shallow water. Blake RW Bioinspir Biomim; 2009 Mar; 4(1):015004. PubMed ID: 19258689 [TBL] [Abstract][Full Text] [Related]
34. The effect of swimmer's hand/forearm acceleration on propulsive forces generation using computational fluid dynamics. Rouboa A; Silva A; Leal L; Rocha J; Alves F J Biomech; 2006; 39(7):1239-48. PubMed ID: 15950980 [TBL] [Abstract][Full Text] [Related]
35. On the role of form and kinematics on the hydrodynamics of self-propelled body/caudal fin swimming. Borazjani I; Sotiropoulos F J Exp Biol; 2010 Jan; 213(1):89-107. PubMed ID: 20008366 [TBL] [Abstract][Full Text] [Related]
36. Characteristics of vortex formation and thrust performance in drag-based paddling propulsion. Kim D; Gharib M J Exp Biol; 2011 Jul; 214(Pt 13):2283-91. PubMed ID: 21653822 [TBL] [Abstract][Full Text] [Related]