These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 26226383)

  • 21. Structure-Based Prediction of G-Protein-Coupled Receptor Ligand Function: A β-Adrenoceptor Case Study.
    Kooistra AJ; Leurs R; de Esch IJ; de Graaf C
    J Chem Inf Model; 2015 May; 55(5):1045-61. PubMed ID: 25848966
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The description of protein internal motions aids selection of ligand binding poses by the INPHARMA method.
    Stauch B; Orts J; Carlomagno T
    J Biomol NMR; 2012 Nov; 54(3):245-56. PubMed ID: 23001323
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assessing protein-ligand docking for the binding of organometallic compounds to proteins.
    Ortega-Carrasco E; Lledós A; Maréchal JD
    J Comput Chem; 2014 Jan; 35(3):192-8. PubMed ID: 24375319
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of site-directed spin labeling for characterizing protein-ligand complexes using simulated restraints.
    Constantine KL
    Biophys J; 2001 Sep; 81(3):1275-84. PubMed ID: 11509344
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Incorporating backbone flexibility in MedusaDock improves ligand-binding pose prediction in the CSAR2011 docking benchmark.
    Ding F; Dokholyan NV
    J Chem Inf Model; 2013 Aug; 53(8):1871-9. PubMed ID: 23237273
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Beware of machine learning-based scoring functions-on the danger of developing black boxes.
    Gabel J; Desaphy J; Rognan D
    J Chem Inf Model; 2014 Oct; 54(10):2807-15. PubMed ID: 25207678
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modeling loop backbone flexibility in receptor-ligand docking simulations.
    Flick J; Tristram F; Wenzel W
    J Comput Chem; 2012 Dec; 33(31):2504-15. PubMed ID: 22886372
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Complete relaxation and conformational exchange matrix (CORCEMA) analysis of intermolecular saturation transfer effects in reversibly forming ligand-receptor complexes.
    Jayalakshmi V; Krishna NR
    J Magn Reson; 2002 Mar; 155(1):106-18. PubMed ID: 11945039
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Docking and scoring with alternative side-chain conformations.
    Hartmann C; Antes I; Lengauer T
    Proteins; 2009 Feb; 74(3):712-26. PubMed ID: 18704939
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nonlinear scoring functions for similarity-based ligand docking and binding affinity prediction.
    Brylinski M
    J Chem Inf Model; 2013 Nov; 53(11):3097-112. PubMed ID: 24171431
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A critical assessment of the performance of protein-ligand scoring functions based on NMR chemical shift perturbations.
    Wang B; Westerhoff LM; Merz KM
    J Med Chem; 2007 Oct; 50(21):5128-34. PubMed ID: 17867664
    [TBL] [Abstract][Full Text] [Related]  

  • 32. RosettaLigand docking with full ligand and receptor flexibility.
    Davis IW; Baker D
    J Mol Biol; 2009 Jan; 385(2):381-92. PubMed ID: 19041878
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative assessment of scoring functions on an updated benchmark: 2. Evaluation methods and general results.
    Li Y; Han L; Liu Z; Wang R
    J Chem Inf Model; 2014 Jun; 54(6):1717-36. PubMed ID: 24708446
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure of an allosteric inhibitor of LFA-1 bound to the I-domain studied by crystallography, NMR, and calorimetry.
    Crump MP; Ceska TA; Spyracopoulos L; Henry A; Archibald SC; Alexander R; Taylor RJ; Findlow SC; O'Connell J; Robinson MK; Shock A
    Biochemistry; 2004 Mar; 43(9):2394-404. PubMed ID: 14992576
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intermolecular relaxation has little effect on intra-peptide exchange-transferred NOE intensities.
    Zabell AP; Post CB
    J Biomol NMR; 2002 Apr; 22(4):303-15. PubMed ID: 12018479
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Representing receptor flexibility in ligand docking through relevant normal modes.
    Cavasotto CN; Kovacs JA; Abagyan RA
    J Am Chem Soc; 2005 Jul; 127(26):9632-40. PubMed ID: 15984891
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigation of ligand binding and protein dynamics in Bacillus subtilis chorismate mutase by transverse relaxation optimized spectroscopy-nuclear magnetic resonance.
    Eletsky A; Kienhöfer A; Hilvert D; Pervushin K
    Biochemistry; 2005 May; 44(18):6788-99. PubMed ID: 15865424
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transferred nuclear overhauser effect in nuclear magnetic resonance diffusion measurements of ligand-protein binding.
    Lucas LH; Yan J; Larive CK; Zartler ER; Shapiro MJ
    Anal Chem; 2003 Feb; 75(3):627-34. PubMed ID: 12585494
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure and orientation of peptide inhibitors bound to beta-amyloid fibrils.
    Chen Z; Krause G; Reif B
    J Mol Biol; 2005 Dec; 354(4):760-76. PubMed ID: 16271725
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.