BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 26226562)

  • 1. Efficient production of 2,3-butanediol in Saccharomyces cerevisiae by eliminating ethanol and glycerol production and redox rebalancing.
    Kim S; Hahn JS
    Metab Eng; 2015 Sep; 31():94-101. PubMed ID: 26226562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deletion of glycerol-3-phosphate dehydrogenase genes improved 2,3-butanediol production by reducing glycerol production in pyruvate decarboxylase-deficient Saccharomyces cerevisiae.
    Kim JW; Lee YG; Kim SJ; Jin YS; Seo JH
    J Biotechnol; 2019 Oct; 304():31-37. PubMed ID: 31421146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient production of acetoin in Saccharomyces cerevisiae by disruption of 2,3-butanediol dehydrogenase and expression of NADH oxidase.
    Bae SJ; Kim S; Hahn JS
    Sci Rep; 2016 Jun; 6():27667. PubMed ID: 27279026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of Lactococcus lactis NADH oxidase increases 2,3-butanediol production in Pdc-deficient Saccharomyces cerevisiae.
    Kim JW; Seo SO; Zhang GC; Jin YS; Seo JH
    Bioresour Technol; 2015 Sep; 191():512-9. PubMed ID: 25769689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced xylose fermentation by engineered yeast expressing NADH oxidase through high cell density inoculums.
    Zhang GC; Turner TL; Jin YS
    J Ind Microbiol Biotechnol; 2017 Mar; 44(3):387-395. PubMed ID: 28070721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of an industrial yeast strain for efficient production of 2,3-butanediol.
    Huo G; Foulquié-Moreno MR; Thevelein JM
    Microb Cell Fact; 2022 Sep; 21(1):199. PubMed ID: 36175998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering of 2,3-butanediol dehydrogenase to reduce acetoin formation by glycerol-overproducing, low-alcohol Saccharomyces cerevisiae.
    Ehsani M; Fernández MR; Biosca JA; Julien A; Dequin S
    Appl Environ Microbiol; 2009 May; 75(10):3196-205. PubMed ID: 19329666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering of Saccharomyces cerevisiae for 2,3-butanediol production.
    Kim SJ; Kim JW; Lee YG; Park YC; Seo JH
    Appl Microbiol Biotechnol; 2017 Mar; 101(6):2241-2250. PubMed ID: 28204883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-yield production of (R)-acetoin in Saccharomyces cerevisiae by deleting genes for NAD(P)H-dependent ketone reductases producing meso-2,3-butanediol and 2,3-dimethylglycerate.
    Bae SJ; Kim S; Park HJ; Kim J; Jin H; Kim BG; Hahn JS
    Metab Eng; 2021 Jul; 66():68-78. PubMed ID: 33845171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced production of 2,3-butanediol from xylose by combinatorial engineering of xylose metabolic pathway and cofactor regeneration in pyruvate decarboxylase-deficient Saccharomyces cerevisiae.
    Kim SJ; Sim HJ; Kim JW; Lee YG; Park YC; Seo JH
    Bioresour Technol; 2017 Dec; 245(Pt B):1551-1557. PubMed ID: 28651874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol.
    Lian J; Chao R; Zhao H
    Metab Eng; 2014 May; 23():92-9. PubMed ID: 24525332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 2,3-butanediol production from cellobiose by engineered Saccharomyces cerevisiae.
    Nan H; Seo SO; Oh EJ; Seo JH; Cate JH; Jin YS
    Appl Microbiol Biotechnol; 2014 Jun; 98(12):5757-64. PubMed ID: 24743979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fine-tuning of NADH oxidase decreases byproduct accumulation in respiration deficient xylose metabolic Saccharomyces cerevisiae.
    Hou J; Suo F; Wang C; Li X; Shen Y; Bao X
    BMC Biotechnol; 2014 Feb; 14():13. PubMed ID: 24529074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decreased xylitol formation during xylose fermentation in Saccharomyces cerevisiae due to overexpression of water-forming NADH oxidase.
    Zhang GC; Liu JJ; Ding WT
    Appl Environ Microbiol; 2012 Feb; 78(4):1081-6. PubMed ID: 22156411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of 2,3-butanediol from xylose by engineered Saccharomyces cerevisiae.
    Kim SJ; Seo SO; Park YC; Jin YS; Seo JH
    J Biotechnol; 2014 Dec; 192 Pt B():376-82. PubMed ID: 24480571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced production of 2,3-butanediol by engineered
    Kim JW; Kim J; Seo SO; Kim KH; Jin YS; Seo JH
    Biotechnol Biofuels; 2016; 9():265. PubMed ID: 27990176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering.
    Ng CY; Jung MY; Lee J; Oh MK
    Microb Cell Fact; 2012 May; 11():68. PubMed ID: 22640729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of 2,3-butanediol by engineered Saccharomyces cerevisiae.
    Kim SJ; Seo SO; Jin YS; Seo JH
    Bioresour Technol; 2013 Oct; 146():274-281. PubMed ID: 23941711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient whole-cell biocatalyst for acetoin production with NAD+ regeneration system through homologous co-expression of 2,3-butanediol dehydrogenase and NADH oxidase in engineered Bacillus subtilis.
    Bao T; Zhang X; Rao Z; Zhao X; Zhang R; Yang T; Xu Z; Yang S
    PLoS One; 2014; 9(7):e102951. PubMed ID: 25036158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enantiopure meso-2,3-butanediol production by metabolically engineered Saccharomyces cerevisiae expressing 2,3-butanediol dehydrogenase from Klebsiella oxytoca.
    Lee YG; Bae JM; Kim SJ
    J Biotechnol; 2022 Aug; 354():1-9. PubMed ID: 35644291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.