BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 26226759)

  • 1. [Application of support vector machine approach in studying nephron toxicity of Chinese medicinal materials].
    Zhang JF; Jiang LD; Zhang YL
    Zhongguo Zhong Yao Za Zhi; 2015 Mar; 40(6):1134-8. PubMed ID: 26226759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Application of support vector machine in screening neurotoxic compounds from traditional Chinese medicine].
    Zhang JF; Jiang LD; Zhang YL
    Zhongguo Zhong Yao Za Zhi; 2014 Sep; 39(17):3330-4. PubMed ID: 25522622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carcinogenicity prediction of noncongeneric chemicals by a support vector machine.
    Zhong M; Nie X; Yan A; Yuan Q
    Chem Res Toxicol; 2013 May; 26(5):741-9. PubMed ID: 23577695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of in Silico Models for Predicting P-Glycoprotein Inhibitors Based on a Two-Step Approach for Feature Selection and Its Application to Chinese Herbal Medicine Screening.
    Yang M; Chen J; Shi X; Xu L; Xi Z; You L; An R; Wang X
    Mol Pharm; 2015 Oct; 12(10):3691-713. PubMed ID: 26376206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of chemical carcinogenicity by machine learning approaches.
    Tan NX; Rao HB; Li ZR; Li XY
    SAR QSAR Environ Res; 2009; 20(1-2):27-75. PubMed ID: 19343583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [An approach to screen nephrotoxic components in traditional Chinese medicine based on fluorescent probe and HK-2 cells and its application].
    Zhao XP; Guo M; Zhang BL
    Zhongguo Zhong Yao Za Zhi; 2013 May; 38(10):1577-80. PubMed ID: 23947141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel approach to generate robust classification models to predict developmental toxicity from imbalanced datasets.
    Gunturi SB; Ramamurthi N
    SAR QSAR Environ Res; 2014; 25(9):711-27. PubMed ID: 25102768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of bioactivity of ACAT2 inhibitors by multilinear regression analysis and support vector machine.
    Zhong M; Xuan S; Wang L; Hou X; Wang M; Yan A; Dai B
    Bioorg Med Chem Lett; 2013 Jul; 23(13):3788-92. PubMed ID: 23711921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of sweetness by multilinear regression analysis and support vector machine.
    Zhong M; Chong Y; Nie X; Yan A; Yuan Q
    J Food Sci; 2013 Sep; 78(9):S1445-50. PubMed ID: 23915005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human nephrotoxicity prediction models for three types of kidney injury based on data sets of pharmacological compounds and their metabolites.
    Lee S; Kang YM; Park H; Dong MS; Shin JM; No KT
    Chem Res Toxicol; 2013 Nov; 26(11):1652-9. PubMed ID: 24138086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predictions of BuChE inhibitors using support vector machine and naive Bayesian classification techniques in drug discovery.
    Fang J; Yang R; Gao L; Zhou D; Yang S; Liu AL; Du GH
    J Chem Inf Model; 2013 Nov; 53(11):3009-20. PubMed ID: 24144102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In silico prediction of major drug clearance pathways by support vector machines with feature-selected descriptors.
    Toshimoto K; Wakayama N; Kusama M; Maeda K; Sugiyama Y; Akiyama Y
    Drug Metab Dispos; 2014 Nov; 42(11):1811-9. PubMed ID: 25128502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seminal quality prediction using data mining methods.
    Sahoo AJ; Kumar Y
    Technol Health Care; 2014; 22(4):531-45. PubMed ID: 24898862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Support vector machine: classifying and predicting mutagenicity of complex mixtures based on pollution profiles.
    Zheng W; Tian D; Wang X; Tian W; Zhang H; Jiang S; He G; Zheng Y; Qu W
    Toxicology; 2013 Nov; 313(2-3):151-9. PubMed ID: 23395826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of ubiquitin proteins using artificial neural networks, hidden markov model and support vector machines.
    Jaiswal K
    In Silico Biol; 2007; 7(6):559-68. PubMed ID: 18467768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comprehensive support vector machine binary hERG classification model based on extensive but biased end point hERG data sets.
    Shen MY; Su BH; Esposito EX; Hopfinger AJ; Tseng YJ
    Chem Res Toxicol; 2011 Jun; 24(6):934-49. PubMed ID: 21504223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of nephrotoxicant action and identification of candidate toxicity-related biomarkers.
    Thukral SK; Nordone PJ; Hu R; Sullivan L; Galambos E; Fitzpatrick VD; Healy L; Bass MB; Cosenza ME; Afshari CA
    Toxicol Pathol; 2005; 33(3):343-55. PubMed ID: 15805072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oversampling to overcome overfitting: exploring the relationship between data set composition, molecular descriptors, and predictive modeling methods.
    Chang CY; Hsu MT; Esposito EX; Tseng YJ
    J Chem Inf Model; 2013 Apr; 53(4):958-71. PubMed ID: 23464929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discrimination of raw and processed Dipsacus asperoides by near infrared spectroscopy combined with least squares-support vector machine and random forests.
    Xin N; Gu XF; Wu H; Hu YZ; Yang ZL
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Apr; 89():18-24. PubMed ID: 22240232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of surface tension for common compounds based on novel methods using heuristic method and support vector machine.
    Wang J; Du H; Liu H; Yao X; Hu Z; Fan B
    Talanta; 2007 Aug; 73(1):147-56. PubMed ID: 19071862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.