These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 26227044)

  • 41. Selenium derivatization of nucleic acids for phase and structure determination in nucleic acid X-ray crystallography.
    Sheng J; Huang Z
    Int J Mol Sci; 2008 Mar; 9(3):258-271. PubMed ID: 19325748
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structural requirements for enzymatic formation of threonylcarbamoyladenosine (t6A) in tRNA: an in vivo study with Xenopus laevis oocytes.
    Morin A; Auxilien S; Senger B; Tewari R; Grosjean H
    RNA; 1998 Jan; 4(1):24-37. PubMed ID: 9436905
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synthesis and properties of the simplified nucleic acid glycol nucleic acid.
    Meggers E; Zhang L
    Acc Chem Res; 2010 Aug; 43(8):1092-102. PubMed ID: 20405911
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Major identity determinants for enzymatic formation of ribothymidine and pseudouridine in the T psi-loop of yeast tRNAs.
    Becker HF; Motorin Y; Sissler M; Florentz C; Grosjean H
    J Mol Biol; 1997 Dec; 274(4):505-18. PubMed ID: 9417931
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A fast selenium derivatization strategy for crystallization and phasing of RNA structures.
    Olieric V; Rieder U; Lang K; Serganov A; Schulze-Briese C; Micura R; Dumas P; Ennifar E
    RNA; 2009 Apr; 15(4):707-15. PubMed ID: 19228585
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification and synthesis of a naturally occurring selenonucleoside in bacterial tRNAs: 5-[(methylamino)methyl]-2-selenouridine.
    Wittwer AJ; Tsai L; Ching WM; Stadtman TC
    Biochemistry; 1984 Sep; 23(20):4650-5. PubMed ID: 6388630
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The synthesis of 2'-methylseleno adenosine and guanosine 5'-triphosphates.
    Santner T; Siegmund V; Marx A; Micura R
    Bioorg Med Chem; 2012 Apr; 20(7):2416-8. PubMed ID: 22364745
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Singly and bifurcated hydrogen-bonded base-pairs in tRNA anticodon hairpins and ribozymes.
    Auffinger P; Westhof E
    J Mol Biol; 1999 Sep; 292(3):467-83. PubMed ID: 10497015
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Presence and location of modified nucleotides in Escherichia coli tmRNA: structural mimicry with tRNA acceptor branches.
    Felden B; Hanawa K; Atkins JF; Himeno H; Muto A; Gesteland RF; McCloskey JA; Crain PF
    EMBO J; 1998 Jun; 17(11):3188-96. PubMed ID: 9606200
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Chemical synthesis of RNA including 5-taurinomethyluridine.
    Ogata T; Wada T
    Nucleic Acids Symp Ser (Oxf); 2006; (50):9-10. PubMed ID: 17150791
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synthesis of a 4-selenothymidine phosphoramidite and incorporation into oligonucleotides.
    Sheng J; Huang Z
    Curr Protoc Nucleic Acid Chem; 2008 Mar; Chapter 1():Unit 1.19. PubMed ID: 18428801
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hydrogen bond formation between the naturally modified nucleobase and phosphate backbone.
    Sheng J; Zhang W; Hassan AE; Gan J; Soares AS; Geng S; Ren Y; Huang Z
    Nucleic Acids Res; 2012 Sep; 40(16):8111-8. PubMed ID: 22641848
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Interstrand cross-link and bioconjugate formation in RNA from a modified nucleotide.
    Sloane JL; Greenberg MM
    J Org Chem; 2014 Oct; 79(20):9792-8. PubMed ID: 25295850
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Crystallographic studies of chemically modified nucleic acids: a backward glance.
    Egli M; Pallan PS
    Chem Biodivers; 2010 Jan; 7(1):60-89. PubMed ID: 20087997
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ascidian mitochondrial tRNA(Met) possessing unique structural characteristics.
    Kondow A; Yokobori S; Ueda T; Watanabe K
    Nucleosides Nucleotides; 1998; 17(1-3):531-9. PubMed ID: 9708361
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Conformational transitions in RNA single uridine and adenosine bulge structures: a molecular dynamics free energy simulation study.
    Barthel A; Zacharias M
    Biophys J; 2006 Apr; 90(7):2450-62. PubMed ID: 16399833
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Codon reading by tRNAAla with modified uridine in the wobble position.
    Kothe U; Rodnina MV
    Mol Cell; 2007 Jan; 25(1):167-74. PubMed ID: 17218280
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Codon recognition by tRNA molecules with a modified or unmodified uridine at the first position of the anticodon.
    Okumura S; Takai K; Yokoyama S; Takaku H
    Nucleic Acids Symp Ser; 1995; (34):203-4. PubMed ID: 8841623
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synthesis and crystal structure of 2'-se-modified guanosine containing DNA.
    Salon J; Sheng J; Gan J; Huang Z
    J Org Chem; 2010 Feb; 75(3):637-41. PubMed ID: 20047333
    [TBL] [Abstract][Full Text] [Related]  

  • 60. tRNA structure and ribosomal function. I. tRNA nucleotide 27-43 mutations enhance first position wobble.
    Schultz DW; Yarus M
    J Mol Biol; 1994 Feb; 235(5):1381-94. PubMed ID: 8107080
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.