BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 26227377)

  • 1. Validation of Numerically Simulated Tissue Temperatures During Transcutaneous Recharge of Neurostimulation Systems.
    Abraham JP; Plourde BD
    Neuromodulation; 2016 Feb; 19(2):161-70. PubMed ID: 26227377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcutaneous Recharge: A Comparison of Numerical Simulation to In Vivo Experiments.
    Plourde B; Vallez L; Nelson-Cheeseman B; Abraham J
    Neuromodulation; 2017 Aug; 20(6):613-621. PubMed ID: 28653422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo experimental study of thermal problems for rechargeable neurostimulators.
    Chen S; Li Q; Wang W; Ma B; Hao H; Li L
    Neuromodulation; 2013; 16(5):436-41; discussion 441-2. PubMed ID: 23601088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surrogate human tissue temperatures resulting from misalignment of antenna and implant during recharging of a neuromodulation device.
    Lovik RD; Abraham JP; Sparrow EM
    Neuromodulation; 2011; 14(6):501-9; discussion 510-1. PubMed ID: 22026592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic resonance imaging conditionally safe neurostimulation leads: investigation of the maximum safe lead tip temperature.
    Coffey RJ; Kalin R; Olsen JM
    Neurosurgery; 2014 Feb; 74(2):215-24; discussion 224-5. PubMed ID: 24176957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility of heating metal implants with alternating magnetic fields (AMF) in scaled up models.
    Sadaphal V; Prasad B; Kay W; Nehring L; Nyugen T; Tepper J; Tanner M; Williams D; Ashton N; Greenberg DE; Chopra R
    Int J Hyperthermia; 2022; 39(1):81-96. PubMed ID: 34949138
    [No Abstract]   [Full Text] [Related]  

  • 7. Sensor-driven position-adaptive spinal cord stimulation for chronic pain.
    Schultz DM; Webster L; Kosek P; Dar U; Tan Y; Sun M
    Pain Physician; 2012; 15(1):1-12. PubMed ID: 22270733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of RF heating on humerus implant in phantoms during 1.5T MR imaging and comparisons with electromagnetic simulation.
    Muranaka H; Horiguchi T; Usui S; Ueda Y; Nakamura O; Ikeda F; Iwakura K; Nakaya G
    Magn Reson Med Sci; 2006 Jul; 5(2):79-88. PubMed ID: 17008764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal evaluation of a hermetic transcutaneous energy transfer system to power mechanical circulatory support devices in destination therapy.
    Au SLC; McCormick D; Lever N; Budgett D
    Artif Organs; 2020 Sep; 44(9):955-967. PubMed ID: 32133654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional theoretical temperature distributions produced by 915 MHz dipole antenna arrays with varying insertion depths in muscle tissue.
    Mechling JA; Strohbehn JW; Ryan TP
    Int J Radiat Oncol Biol Phys; 1992; 22(1):131-8. PubMed ID: 1727110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transient bioheat simulation of the laser-tissue interaction in human skin using hybrid finite element formulation.
    Zhang ZW; Wang H; Qin QH
    Mol Cell Biomech; 2012 Mar; 9(1):31-53. PubMed ID: 22428360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A temperature sensor implant for active implantable medical devices for in vivo subacute heating tests under MRI.
    Silemek B; Acikel V; Oto C; Alipour A; Aykut ZG; Algin O; Atalar E
    Magn Reson Med; 2018 May; 79(5):2824-2832. PubMed ID: 28913978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D conformal MRI-controlled transurethral ultrasound prostate therapy: validation of numerical simulations and demonstration in tissue-mimicking gel phantoms.
    Burtnyk M; N'Djin WA; Kobelevskiy I; Bronskill M; Chopra R
    Phys Med Biol; 2010 Nov; 55(22):6817-39. PubMed ID: 21030751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new local thermal bioheat model for predicting the temperature of skin thermoreceptors of individual body tissues.
    Khiavi NM; Maerefat M; Zolfaghari SA
    J Therm Biol; 2018 May; 74():290-302. PubMed ID: 29801641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite volume analysis of temperature effects induced by active MRI implants: 2. Defects on active MRI implants causing hot spots.
    Busch MH; Vollmann W; Grönemeyer DH
    Biomed Eng Online; 2006 May; 5():35. PubMed ID: 16729878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical Study of Hyper-Thermic Laser Lipolysis With 1,064 nm Nd:YAG Laser in Human Subjects.
    Milanic M; Muc BT; Lukac N; Lukac M
    Lasers Surg Med; 2019 Dec; 51(10):897-909. PubMed ID: 31228285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RF safety assessment of a bilateral four-channel transmit/receive 7 Tesla breast coil: SAR versus tissue temperature limits.
    Fiedler TM; Ladd ME; Bitz AK
    Med Phys; 2017 Jan; 44(1):143-157. PubMed ID: 28102957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequency considerations for deep ablation with high-intensity focused ultrasound: A simulation study.
    Ellens N; Hynynen K
    Med Phys; 2015 Aug; 42(8):4896-10. PubMed ID: 26233216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature elevation by HIFU in ex vivo porcine muscle: MRI measurement and simulation study.
    Solovchuk MA; Hwang SC; Chang H; Thiriet M; Sheu TW
    Med Phys; 2014 May; 41(5):052903. PubMed ID: 24784403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heat transfer analysis of skin during thermal therapy using thermal wave equation.
    Kashcooli M; Salimpour MR; Shirani E
    J Therm Biol; 2017 Feb; 64():7-18. PubMed ID: 28166948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.