These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 26227776)
41. New direct inhibitors of InhA with antimycobacterial activity based on a tetrahydropyran scaffold. Pajk S; Živec M; Šink R; Sosič I; Neu M; Chung CW; Martínez-Hoyos M; Pérez-Herrán E; Álvarez-Gómez D; Álvarez-Ruíz E; Mendoza-Losana A; Castro-Pichel J; Barros D; Ballell-Pages L; Young RJ; Convery MA; Encinas L; Gobec S Eur J Med Chem; 2016 Apr; 112():252-257. PubMed ID: 26900657 [TBL] [Abstract][Full Text] [Related]
42. Synthesis, antimycobacterial screening and ligand-based molecular docking studies on novel pyrrole derivatives bearing pyrazoline, isoxazole and phenyl thiourea moieties. Joshi SD; Dixit SR; Kirankumar MN; Aminabhavi TM; Raju KV; Narayan R; Lherbet C; Yang KS Eur J Med Chem; 2016 Jan; 107():133-52. PubMed ID: 26580979 [TBL] [Abstract][Full Text] [Related]
43. Development of isoniazid-NAD truncated adducts embedding a lipophilic fragment as potential bi-substrate InhA inhibitors and antimycobacterial agents. Delaine T; Bernardes-Génisson V; Quémard A; Constant P; Meunier B; Bernadou J Eur J Med Chem; 2010 Oct; 45(10):4554-61. PubMed ID: 20696503 [TBL] [Abstract][Full Text] [Related]
44. Pyrrolidinone and pyrrolidine derivatives: Evaluation as inhibitors of InhA and Mycobacterium tuberculosis. Matviiuk T; Madacki J; Mori G; Orena BS; Menendez C; Kysil A; André-Barrès C; Rodriguez F; Korduláková J; Mallet-Ladeira S; Voitenko Z; Pasca MR; Lherbet C; Baltas M Eur J Med Chem; 2016 Nov; 123():462-475. PubMed ID: 27490025 [TBL] [Abstract][Full Text] [Related]
45. The isoniazid-NAD adduct is a slow, tight-binding inhibitor of InhA, the Mycobacterium tuberculosis enoyl reductase: adduct affinity and drug resistance. Rawat R; Whitty A; Tonge PJ Proc Natl Acad Sci U S A; 2003 Nov; 100(24):13881-6. PubMed ID: 14623976 [TBL] [Abstract][Full Text] [Related]
47. Synthesis of 3-heteryl substituted pyrrolidine-2,5-diones via catalytic Michael reaction and evaluation of their inhibitory activity against InhA and Mycobacterium tuberculosis. Matviiuk T; Mori G; Lherbet C; Rodriguez F; Pasca MR; Gorichko M; Guidetti B; Voitenko Z; Baltas M Eur J Med Chem; 2014 Jan; 71():46-52. PubMed ID: 24269516 [TBL] [Abstract][Full Text] [Related]
48. Panosialins, inhibitors of enoyl-ACP reductase from Streptomyces sp. AN1761. Kwon YJ; Sohn MJ; Oh T; Cho SN; Kim CJ; Kim WG J Microbiol Biotechnol; 2013 Feb; 23(2):184-8. PubMed ID: 23412060 [TBL] [Abstract][Full Text] [Related]
49. Probing mechanisms of resistance to the tuberculosis drug isoniazid: Conformational changes caused by inhibition of InhA, the enoyl reductase from Mycobacterium tuberculosis. Kruh NA; Rawat R; Ruzsicska BP; Tonge PJ Protein Sci; 2007 Aug; 16(8):1617-27. PubMed ID: 17600151 [TBL] [Abstract][Full Text] [Related]
50. Targeting InhA, the FASII enoyl-ACP reductase: SAR studies on novel inhibitor scaffolds. Pan P; Tonge PJ Curr Top Med Chem; 2012; 12(7):672-93. PubMed ID: 22283812 [TBL] [Abstract][Full Text] [Related]
51. In Silico Driven Design and Synthesis of Rhodanine Derivatives as Novel Antibacterials Targeting the Enoyl Reductase InhA. Slepikas L; Chiriano G; Perozzo R; Tardy S; Kranjc A; Patthey-Vuadens O; Ouertatani-Sakouhi H; Kicka S; Harrison CF; Scrignari T; Perron K; Hilbi H; Soldati T; Cosson P; Tarasevicius E; Scapozza L J Med Chem; 2016 Dec; 59(24):10917-10928. PubMed ID: 26730986 [TBL] [Abstract][Full Text] [Related]
52. Encoded library technology as a source of hits for the discovery and lead optimization of a potent and selective class of bactericidal direct inhibitors of Mycobacterium tuberculosis InhA. Encinas L; O'Keefe H; Neu M; Remuiñán MJ; Patel AM; Guardia A; Davie CP; Pérez-Macías N; Yang H; Convery MA; Messer JA; Pérez-Herrán E; Centrella PA; Alvarez-Gómez D; Clark MA; Huss S; O'Donovan GK; Ortega-Muro F; McDowell W; Castañeda P; Arico-Muendel CC; Pajk S; Rullás J; Angulo-Barturen I; Alvarez-Ruíz E; Mendoza-Losana A; Ballell Pages L; Castro-Pichel J; Evindar G J Med Chem; 2014 Feb; 57(4):1276-88. PubMed ID: 24450589 [TBL] [Abstract][Full Text] [Related]
53. Identification of Mycobacterium tuberculosis enoyl-acyl carrier protein reductase inhibitors: A combined in-silico and in-vitro analysis. Lone MY; Athar M; Gupta VK; Jha PC J Mol Graph Model; 2017 Sep; 76():172-180. PubMed ID: 28734205 [TBL] [Abstract][Full Text] [Related]
54. Machine learning assisted methods for the identification of low toxicity inhibitors of Enoyl-Acyl Carrier Protein Reductase (InhA). Chikhale RV; Abdelghani HTM; Deka H; Pawar AD; Patil PC; Bhowmick S Comput Biol Chem; 2024 Jun; 110():108034. PubMed ID: 38430612 [TBL] [Abstract][Full Text] [Related]
55. The DprE1 enzyme, one of the most vulnerable targets of Mycobacterium tuberculosis. Riccardi G; Pasca MR; Chiarelli LR; Manina G; Mattevi A; Binda C Appl Microbiol Biotechnol; 2013 Oct; 97(20):8841-8. PubMed ID: 24037308 [TBL] [Abstract][Full Text] [Related]
56. Computer-Aided Design of Orally Bioavailable Pyrrolidine Carboxamide Inhibitors of Enoyl-Acyl Carrier Protein Reductase of Mycobacterium tuberculosis with Favorable Pharmacokinetic Profiles. Kouassi AF; Kone M; Keita M; Esmel A; Megnassan E; N'Guessan YT; Frecer V; Miertus S Int J Mol Sci; 2015 Dec; 16(12):29744-71. PubMed ID: 26703572 [TBL] [Abstract][Full Text] [Related]
57. Crystal structure of the enoyl-ACP reductase of Mycobacterium tuberculosis (InhA) in the apo-form and in complex with the active metabolite of isoniazid pre-formed by a biomimetic approach. Chollet A; Mourey L; Lherbet C; Delbot A; Julien S; Baltas M; Bernadou J; Pratviel G; Maveyraud L; Bernardes-Génisson V J Struct Biol; 2015 Jun; 190(3):328-37. PubMed ID: 25891098 [TBL] [Abstract][Full Text] [Related]