BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 26229988)

  • 1. Naked-eye nanobiosensor for therapeutic drug monitoring of methotrexate.
    Yockell-Lelièvre H; Bukar N; Toulouse JL; Pelletier JN; Masson JF
    Analyst; 2016 Jan; 141(2):697-703. PubMed ID: 26229988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring methotrexate in clinical samples from cancer patients during chemotherapy with a LSPR-based competitive sensor.
    Zhao SS; Bichelberger MA; Colin DY; Robitaille R; Pelletier JN; Masson JF
    Analyst; 2012 Oct; 137(20):4742-50. PubMed ID: 22943049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of the Debye length on the interaction of a small molecule-modified Au nanoparticle with a surface-bound bioreceptor.
    Bukar N; Zhao SS; Charbonneau DM; Pelletier JN; Masson JF
    Chem Commun (Camb); 2014 May; 50(38):4947-50. PubMed ID: 24705454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Naked eye detection of glucose in urine using glucose oxidase immobilized gold nanoparticles.
    Radhakumary C; Sreenivasan K
    Anal Chem; 2011 Apr; 83(7):2829-33. PubMed ID: 21391552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Miniature multi-channel SPR instrument for methotrexate monitoring in clinical samples.
    Zhao SS; Bukar N; Toulouse JL; Pelechacz D; Robitaille R; Pelletier JN; Masson JF
    Biosens Bioelectron; 2015 Feb; 64():664-70. PubMed ID: 25441416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzyme-guided plasmonic biosensor based on dual-functional nanohybrid for sensitive detection of thrombin.
    Yan J; Wang L; Tang L; Lin L; Liu Y; Li J
    Biosens Bioelectron; 2015 Aug; 70():404-10. PubMed ID: 25845332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of nanoparticle size and cell type on high sensitivity cell detection using a localized surface plasmon resonance biosensor.
    Liu F; Wong MM; Chiu SK; Lin H; Ho JC; Pang SW
    Biosens Bioelectron; 2014 May; 55():141-8. PubMed ID: 24373953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybridization of localized surface plasmon resonance-based Au-Ag nanoparticles.
    Zhu S; Fu Y
    Biomed Microdevices; 2009 Jun; 11(3):579-83. PubMed ID: 19085108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A label-free sensing method for phosphopeptides using two-layer gold nanoparticle-based localized surface plasma resonance spectroscopy.
    Chen JY; Chen YC
    Anal Bioanal Chem; 2011 Jan; 399(3):1173-80. PubMed ID: 21058028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colorimetric and plasmonic detection of lectins using core-shell gold glyconanoparticles prepared by copper-free click chemistry.
    Hu XL; Jin HY; He XP; James TD; Chen GR; Long YT
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1874-8. PubMed ID: 25531131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Birth of the localized surface plasmon resonance in monolayer-protected gold nanoclusters.
    Malola S; Lehtovaara L; Enkovaara J; Häkkinen H
    ACS Nano; 2013 Nov; 7(11):10263-70. PubMed ID: 24107127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of antibody binding to protein immobilized on gold nanoparticles by localized surface plasmon spectroscopy.
    Fujiwara K; Watarai H; Itoh H; Nakahama E; Ogawa N
    Anal Bioanal Chem; 2006 Oct; 386(3):639-44. PubMed ID: 16823566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of particle properties and light polarization on the plasmonic resonances in metallic nanoparticles.
    Guler U; Turan R
    Opt Express; 2010 Aug; 18(16):17322-38. PubMed ID: 20721120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colorimetric Detection of Small Molecules in Complex Matrixes via Target-Mediated Growth of Aptamer-Functionalized Gold Nanoparticles.
    Soh JH; Lin Y; Rana S; Ying JY; Stevens MM
    Anal Chem; 2015 Aug; 87(15):7644-52. PubMed ID: 26197040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multifunctional biosensor based on localized surface plasmon resonance for monitoring small molecule-protein interaction.
    Guerreiro JR; Frederiksen M; Bochenkov VE; De Freitas V; Sales MG; Sutherland DS
    ACS Nano; 2014 Aug; 8(8):7958-67. PubMed ID: 25003494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tetrakis(4-sulfonatophenyl)porphyrin-directed assembly of gold nanocrystals: tailoring the plasmon coupling through controllable gap distances.
    Zhang L; Chen H; Wang J; Li YF; Wang J; Sang Y; Xiao SJ; Zhan L; Huang CZ
    Small; 2010 Sep; 6(18):2001-9. PubMed ID: 20715071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localized surface plasmon resonance of gold nanoparticles as colorimetric probes for determination of Isoniazid in pharmacological formulation.
    Zargar B; Hatamie A
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Apr; 106():185-9. PubMed ID: 23380146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metallic nanodot arrays by stencil lithography for plasmonic biosensing applications.
    Vazquez-Mena O; Sannomiya T; Villanueva LG; Voros J; Brugger J
    ACS Nano; 2011 Feb; 5(2):844-53. PubMed ID: 21192666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.