These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 2623004)

  • 1. On the development of behavioral tolerance to organophosphates. I: Behavioral and biochemical aspects.
    van Dongen CJ; Wolthuis OL
    Pharmacol Biochem Behav; 1989 Nov; 34(3):473-81. PubMed ID: 2623004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the development of behavioral tolerance to organophosphates. III: Behavioral aspects.
    Wolthuis OL; Philippens IH; Vanwersch R
    Pharmacol Biochem Behav; 1990 Mar; 35(3):561-5. PubMed ID: 2339148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the development of behavioral tolerance to organophosphates. IV: EEGand visual evoked responses.
    Wolthuis OL; Philippens IH; Vanwersch RA
    Pharmacol Biochem Behav; 1991 Aug; 39(4):851-8. PubMed ID: 1763103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Behavioral and neurochemical changes in rats dosed repeatedly with diisopropylfluorophosphate.
    Bushnell PJ; Padilla SS; Ward T; Pope CN; Olszyk VB
    J Pharmacol Exp Ther; 1991 Feb; 256(2):741-50. PubMed ID: 1994004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the development of behavioral tolerance to organophosphates. II: Neurophysiological aspects.
    Melchers BP; van Helden HP
    Pharmacol Biochem Behav; 1990 Feb; 35(2):321-5. PubMed ID: 2157228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation of muscarinic receptor density and acetylcholinesterase activity in repeated DFP-treated rats after the termination of DFP administration.
    Lim DK; Hoskins B; Ho IK
    Eur J Pharmacol; 1986 Apr; 123(2):223-8. PubMed ID: 3709665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repeated exposure to diisopropylfluorophosphate (DFP) produces increased sensitivity to cholinergic antagonists in discrimination retention and reversal.
    Raffaele K; Olton D; Annau Z
    Psychopharmacology (Berl); 1990; 100(2):267-74. PubMed ID: 2305015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of uptake of [14C]valine into protein in the development of tolerance to diisopropylphosphorofluoridate (DFP) toxicity.
    Gupta RC; Dettbarn WD
    Toxicol Appl Pharmacol; 1986 Jul; 84(3):551-60. PubMed ID: 3726875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of acute and chronic cholinesterase inhibition with diisopropylfluorophosphate on muscarinic, dopamine, and GABA receptors of the rat striatum.
    Sivam SP; Norris JC; Lim DK; Hoskins B; Ho IK
    J Neurochem; 1983 May; 40(5):1414-22. PubMed ID: 6300336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sex differences in the recovery of brain acetylcholinesterase activity following a single exposure to DFP.
    Smolen A; Smolen TN; Han PC; Collins AC
    Pharmacol Biochem Behav; 1987 Apr; 26(4):813-20. PubMed ID: 3602038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiologically based pharmacokinetic and pharmacodynamic model for the inhibition of acetylcholinesterase by diisopropylfluorophosphate.
    Gearhart JM; Jepson GW; Clewell HJ; Andersen ME; Conolly RB
    Toxicol Appl Pharmacol; 1990 Nov; 106(2):295-310. PubMed ID: 2256118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Species differences in diisopropylfluorophosphate-induced decreases in the number of brain nicotinic receptors.
    Van de Kamp JL; Collins AC
    Pharmacol Biochem Behav; 1992 May; 42(1):131-41. PubMed ID: 1528936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissociation of decreased numbers of muscarinic receptors from tolerance to DFP.
    Smolen TN; Smolen A; Collins AC
    Pharmacol Biochem Behav; 1986 Dec; 25(6):1293-301. PubMed ID: 3809233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms involved in the development of tolerance to DFP toxicity.
    Gupta RC; Patterson GT; Dettbarn WD
    Fundam Appl Toxicol; 1985 Dec; 5(6 Pt 2):S17-28. PubMed ID: 4092885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of PAM, proPAM, and DFP on behavior, thermoregulation, and brain AChE in rats.
    Kenley RA; Howd RA; Uyeno ET
    Pharmacol Biochem Behav; 1982 Nov; 17(5):1001-8. PubMed ID: 7178195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles of mu-opioid receptors in development of tolerance to diisopropylfluorophosphate (DFP).
    Tien LT; Fan LW; Ma T; Loh HH; Ho IK
    J Toxicol Sci; 2005 Feb; 30(1):43-59. PubMed ID: 15800401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toxicity of soman after repetitive injection of sublethal doses in rat.
    Sterri SH; Lyngaas S; Fonnum F
    Acta Pharmacol Toxicol (Copenh); 1980 Jan; 46(1):1-7. PubMed ID: 7361558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of soman and DFP in vivo and in vitro on cerebral metabolism in the rat.
    Jović R; Bachelard HS; Clark AG; Nicholas PC
    Biochem Pharmacol; 1971 Mar; 20(3):519-27. PubMed ID: 4260787
    [No Abstract]   [Full Text] [Related]  

  • 19. Effects of diisopropylfluorophosphate on brain cholinergic systems of rats at early developmental stages.
    Michalek H; Pintor A; Fortuna S; Bisso GM
    Fundam Appl Toxicol; 1985 Dec; 5(6 Pt 2):S204-12. PubMed ID: 4092888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial memory impairment and central muscarinic receptor loss following prolonged treatment with organophosphates.
    McDonald BE; Costa LG; Murphy SD
    Toxicol Lett; 1988 Jan; 40(1):47-56. PubMed ID: 3341049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.