These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 26230116)

  • 21. Velocity of the Body Center of Mass During Walking on Split-Belt Treadmill.
    Tesio L; Scarano S; Cerina V; Malloggi C; Catino L
    Am J Phys Med Rehabil; 2021 Jun; 100(6):620-624. PubMed ID: 33998608
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spatiotemporal gait deviations in a virtual reality environment.
    Hollman JH; Brey RH; Robb RA; Bang TJ; Kaufman KR
    Gait Posture; 2006 Jun; 23(4):441-4. PubMed ID: 16095905
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The influence of walking speed on kinetic and kinematic parameters in patients with osteoarthritis of the hip using a force-instrumented treadmill and standardised gait speeds.
    Möckel G; Perka C; Labs K; Duda G
    Arch Orthop Trauma Surg; 2003 Jul; 123(6):278-82. PubMed ID: 12748870
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A comparison of gait biomechanics and metabolic requirements of overground and treadmill walking in people with stroke.
    Brouwer B; Parvataneni K; Olney SJ
    Clin Biomech (Bristol, Avon); 2009 Nov; 24(9):729-34. PubMed ID: 19664866
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of human walking and running parameters as a function of speed.
    Paróczai R; Kocsis L
    Technol Health Care; 2006; 14(4-5):251-60. PubMed ID: 17065748
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sounding better: fast audio cues increase walk speed in treadmill-mediated virtual rehabilitation environments.
    Powell W; Stevens B; Hand S; Simmonds M
    Stud Health Technol Inform; 2010; 154():202-7. PubMed ID: 20543298
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Agreement between temporal and spatial gait parameters from an instrumented walkway and treadmill system at matched walking speed.
    Wearing SC; Reed LF; Urry SR
    Gait Posture; 2013 Jul; 38(3):380-4. PubMed ID: 23337733
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inertial compensation for belt acceleration in an instrumented treadmill.
    Hnat SK; van den Bogert AJ
    J Biomech; 2014 Nov; 47(15):3758-61. PubMed ID: 25458202
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gaze direction affects walking speed when using a self-paced treadmill with a virtual reality environment.
    Jeschke AM; de Groot LE; van der Woude LHV; Oude Lansink ILB; van Kouwenhove L; Hijmans JM
    Hum Mov Sci; 2019 Oct; 67():102498. PubMed ID: 31330475
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Force measurements during running on different instrumented treadmills.
    Asmussen MJ; Kaltenbach C; Hashlamoun K; Shen H; Federico S; Nigg BM
    J Biomech; 2019 Feb; 84():263-268. PubMed ID: 30621957
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The 3D path of body centre of mass during adult human walking on force treadmill.
    Tesio L; Rota V; Chessa C; Perucca L
    J Biomech; 2010 Mar; 43(5):938-44. PubMed ID: 19959172
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Ground reaction forces of the canine hindlimb: are there differences between gait on treadmill and force plate?].
    Drüen S; Böddeker J; Nolte I; Wefstaedt P
    Berl Munch Tierarztl Wochenschr; 2010; 123(7-8):339-45. PubMed ID: 20690546
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The use of a computer-assisted rehabilitation environment (CAREN) for enhancing wounded warrior rehabilitation regimens.
    Isaacson BM; Swanson TM; Pasquina PF
    J Spinal Cord Med; 2013 Jul; 36(4):296-9. PubMed ID: 23820145
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Determining the centre of pressure during walking and running using an instrumented treadmill.
    Verkerke GJ; Hof AL; Zijlstra W; Ament W; Rakhorst G
    J Biomech; 2005 Sep; 38(9):1881-5. PubMed ID: 16023476
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predictive control of ankle stiffness at heel contact is a key element of locomotor adaptation during split-belt treadmill walking in humans.
    Ogawa T; Kawashima N; Ogata T; Nakazawa K
    J Neurophysiol; 2014 Feb; 111(4):722-32. PubMed ID: 24225544
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Developing a Low-Cost Force Treadmill via Dynamic Modeling.
    Hong CY; Guo LY; Song R; Nagurka ML; Sung JL; Yen CW
    J Healthc Eng; 2017; 2017():9875471. PubMed ID: 29065677
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Might patients with cerebellar ataxia benefit from the Computer Assisted Rehabilitation ENvironment (CAREN)? A pilot study focusing on gait and balance.
    Bonanno M; De Pasquale P; De Marchis C; Lombardo Facciale A; Paladina G; Fonti B; Quartarone A; Calabrò RS
    Front Bioeng Biotechnol; 2024; 12():1385280. PubMed ID: 39011156
    [No Abstract]   [Full Text] [Related]  

  • 38. Evaluation of a treadmill with integrated force plates for kinetic gait analysis of sound and lame dogs at a trot.
    Brebner NS; Moens NM; Runciman JR
    Vet Comp Orthop Traumatol; 2006; 19(4):205-12. PubMed ID: 17143392
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gait synchronized force modulation during the stance period of one limb achieved by an active partial body weight support system.
    Franz JR; Riley PO; Dicharry J; Allaire PE; Kerrigan DC
    J Biomech; 2008 Nov; 41(15):3116-20. PubMed ID: 18986653
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamic control of a moving platform using the CAREN system to optimize walking in virtual reality environments.
    Makssoud HE; Richards CL; Comeau F
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2384-7. PubMed ID: 19965194
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.