BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 26230193)

  • 21. TsrM as a Model for Purifying and Characterizing Cobalamin-Dependent Radical S-Adenosylmethionine Methylases.
    Blaszczyk AJ; Wang RX; Booker SJ
    Methods Enzymol; 2017; 595():303-329. PubMed ID: 28882204
    [TBL] [Abstract][Full Text] [Related]  

  • 22. From cyclohydrolase to oxidoreductase: discovery of nitrile reductase activity in a common fold.
    Van Lanen SG; Reader JS; Swairjo MA; de Crécy-Lagard V; Lee B; Iwata-Reuyl D
    Proc Natl Acad Sci U S A; 2005 Mar; 102(12):4264-9. PubMed ID: 15767583
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enzymatic formation of queuosine and of glycosyl queuosine in yeast tRNAs microinjected into Xenopus laevis oocytes. The effect of the anticodon loop sequence.
    Haumont E; Droogmans L; Grosjean H
    Eur J Biochem; 1987 Oct; 168(1):219-25. PubMed ID: 3117541
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aspartate 141 is the fourth ligand of the oxygen-sensing [4Fe-4S]2+ cluster of Bacillus subtilis transcriptional regulator Fnr.
    Gruner I; Frädrich C; Böttger LH; Trautwein AX; Jahn D; Härtig E
    J Biol Chem; 2011 Jan; 286(3):2017-21. PubMed ID: 21068385
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigation of the iron-sulfur cluster in Mycobacterium tuberculosis APS reductase: implications for substrate binding and catalysis.
    Carroll KS; Gao H; Chen H; Leary JA; Bertozzi CR
    Biochemistry; 2005 Nov; 44(44):14647-57. PubMed ID: 16262264
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Redox chemistry of cobalamin and iron-sulfur cofactors in the tetrachloroethene reductase of Dehalobacter restrictus.
    Schumacher W; Holliger C; Zehnder AJ; Hagen WR
    FEBS Lett; 1997 Jun; 409(3):421-5. PubMed ID: 9224702
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Escherichia coli COG1738 Member YhhQ Is Involved in 7-Cyanodeazaguanine (preQ₀) Transport.
    Zallot R; Yuan Y; de Crécy-Lagard V
    Biomolecules; 2017 Feb; 7(1):. PubMed ID: 28208705
    [TBL] [Abstract][Full Text] [Related]  

  • 28. De novo design of an artificial bis[4Fe-4S] binding protein.
    Roy A; Sarrou I; Vaughn MD; Astashkin AV; Ghirlanda G
    Biochemistry; 2013 Oct; 52(43):7586-94. PubMed ID: 24090184
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Detection and quantification of glycosylated queuosine modified tRNAs by acid denaturing and APB gels.
    Zhang W; Xu R; Matuszek Ż; Cai Z; Pan T
    RNA; 2020 Sep; 26(9):1291-1298. PubMed ID: 32439717
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis of Galactosyl-Queuosine and Distribution of Hypermodified Q-Nucleosides in Mouse Tissues.
    Thumbs P; Ensfelder TT; Hillmeier M; Wagner M; Heiss M; Scheel C; Schön A; Müller M; Michalakis S; Kellner S; Carell T
    Angew Chem Int Ed Engl; 2020 Jul; 59(30):12352-12356. PubMed ID: 32160400
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The deazapurine biosynthetic pathway revealed: in vitro enzymatic synthesis of PreQ(0) from guanosine 5'-triphosphate in four steps.
    McCarty RM; Somogyi A; Lin G; Jacobsen NE; Bandarian V
    Biochemistry; 2009 May; 48(18):3847-52. PubMed ID: 19354300
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Crystallization and preliminary X-ray characterization of the nitrile reductase QueF: a queuosine-biosynthesis enzyme.
    Swairjo MA; Reddy RR; Lee B; Van Lanen SG; Brown S; de Crécy-Lagard V; Iwata-Reuyl D; Schimmel P
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2005 Oct; 61(Pt 10):945-8. PubMed ID: 16511203
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spectroscopic evidence for site specific chemistry at a unique iron site of the [4Fe-4S] cluster in ferredoxin:thioredoxin reductase.
    Jameson GN; Walters EM; Manieri W; Schürmann P; Johnson MK; Huynh BH
    J Am Chem Soc; 2003 Feb; 125(5):1146-7. PubMed ID: 12553798
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of the [4Fe-4S] cluster in reductive activation of the cobalt center of the corrinoid iron-sulfur protein from Clostridium thermoaceticum during acetate biosynthesis.
    Menon S; Ragsdale SW
    Biochemistry; 1998 Apr; 37(16):5689-98. PubMed ID: 9548955
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biosynthesis of the 7-deazaguanosine hypermodified nucleosides of transfer RNA.
    Iwata-Reuyl D
    Bioorg Chem; 2003 Feb; 31(1):24-43. PubMed ID: 12697167
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of queuosine and 2-thio tRNA modifications by high throughput sequencing.
    Katanski CD; Watkins CP; Zhang W; Reyer M; Miller S; Pan T
    Nucleic Acids Res; 2022 Sep; 50(17):e99. PubMed ID: 35713550
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heterodisulfide reductase from methanogenic archaea: a new catalytic role for an iron-sulfur cluster.
    Hedderich R; Hamann N; Bennati M
    Biol Chem; 2005 Oct; 386(10):961-70. PubMed ID: 16218868
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Iron-sulfur cluster engineering provides insight into the evolution of substrate specificity among sulfonucleotide reductases.
    Bhave DP; Hong JA; Keller RL; Krebs C; Carroll KS
    ACS Chem Biol; 2012 Feb; 7(2):306-15. PubMed ID: 22023093
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of queuosine on tRNA structure and function.
    Morris RC; Brown KG; Elliott MS
    J Biomol Struct Dyn; 1999 Feb; 16(4):757-74. PubMed ID: 10217448
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure-Function Studies of the Bacillus subtilis Ric Proteins Identify the Fe-S Cluster-Ligating Residues and Their Roles in Development and RNA Processing.
    Adusei-Danso F; Khaja FT; DeSantis M; Jeffrey PD; Dubnau E; Demeler B; Neiditch MB; Dubnau D
    mBio; 2019 Sep; 10(5):. PubMed ID: 31530674
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.