BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 26230367)

  • 1. Functional Connectivity Between Superior Parietal Lobule and Primary Visual Cortex "at Rest" Predicts Visual Search Efficiency.
    Bueichekú E; Ventura-Campos N; Palomar-García MÁ; Miró-Padilla A; Parcet MA; Ávila C
    Brain Connect; 2015 Oct; 5(8):517-26. PubMed ID: 26230367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional connectivity at rest captures individual differences in visual search.
    Bueichekú E; Miró-Padilla A; Ávila C
    Brain Struct Funct; 2020 Mar; 225(2):537-549. PubMed ID: 31897605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diurnal patterns of activity of the orienting and executive attention neuronal networks in subjects performing a Stroop-like task: a functional magnetic resonance imaging study.
    Marek T; Fafrowicz M; Golonka K; Mojsa-Kaja J; Oginska H; Tucholska K; Urbanik A; Beldzik E; Domagalik A
    Chronobiol Int; 2010 Jul; 27(5):945-58. PubMed ID: 20636208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Task-Dependent Changes in Frontal-Parietal Activation and Connectivity During Visual Search.
    Maximo JO; Neupane A; Saxena N; Joseph RM; Kana RK
    Brain Connect; 2016 May; 6(4):335-44. PubMed ID: 26729050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional connectivity of the fusiform gyrus during a face-matching task in subjects with mild cognitive impairment.
    Bokde AL; Lopez-Bayo P; Meindl T; Pechler S; Born C; Faltraco F; Teipel SJ; Möller HJ; Hampel H
    Brain; 2006 May; 129(Pt 5):1113-24. PubMed ID: 16520329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of parietal cortex during sustained visual spatial attention.
    Thakral PP; Slotnick SD
    Brain Res; 2009 Dec; 1302():157-66. PubMed ID: 19765554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differentiated parietal connectivity of frontal regions for "what" and "where" memory.
    Rottschy C; Caspers S; Roski C; Reetz K; Dogan I; Schulz JB; Zilles K; Laird AR; Fox PT; Eickhoff SB
    Brain Struct Funct; 2013 Nov; 218(6):1551-67. PubMed ID: 23143344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sex and performance level effects on brain activation during a verbal fluency task: a functional magnetic resonance imaging study.
    Gauthier CT; Duyme M; Zanca M; Capron C
    Cortex; 2009 Feb; 45(2):164-76. PubMed ID: 19150518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Occipital-parietal interactions during shifts of exogenous visuospatial attention: trial-dependent changes of effective connectivity.
    Indovina I; Macaluso E
    Magn Reson Imaging; 2004 Dec; 22(10):1477-86. PubMed ID: 15707797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deficits in subprocesses of visual feature search after frontal, parietal, and temporal brain lesions--a modeling approach.
    Müller-Plath G; Ott DV; Pollmann S
    J Cogn Neurosci; 2010 Jul; 22(7):1399-424. PubMed ID: 19445605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cognitive control network: Integrated cortical regions with dissociable functions.
    Cole MW; Schneider W
    Neuroimage; 2007 Aug; 37(1):343-60. PubMed ID: 17553704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inferior-frontal cortex phase synchronizes with the temporal-parietal junction prior to successful change detection.
    Micheli C; Kaping D; Westendorff S; Valiante TA; Womelsdorf T
    Neuroimage; 2015 Oct; 119():417-31. PubMed ID: 26119023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hemispheric asymmetry in cognitive division of anterior cingulate cortex: a resting-state functional connectivity study.
    Yan H; Zuo XN; Wang D; Wang J; Zhu C; Milham MP; Zhang D; Zang Y
    Neuroimage; 2009 Oct; 47(4):1579-89. PubMed ID: 19501172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frontal cortical regions associated with attention connect more strongly to central than peripheral V1.
    Sims SA; Demirayak P; Cedotal S; Visscher KM
    Neuroimage; 2021 Sep; 238():118246. PubMed ID: 34111516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional connectivity changes between parietal and prefrontal cortices in primary insomnia patients: evidence from resting-state fMRI.
    Li Y; Wang E; Zhang H; Dou S; Liu L; Tong L; Lei Y; Wang M; Xu J; Shi D; Zhang Q
    Eur J Med Res; 2014 Jun; 19(1):32. PubMed ID: 24915847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Occipital cortical thickness in very low birth weight born adolescents predicts altered neural specialization of visual semantic category related neural networks.
    Klaver P; Latal B; Martin E
    Neuropsychologia; 2015 Jan; 67():41-54. PubMed ID: 25458481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the neural basis of focused and divided attention.
    Nebel K; Wiese H; Stude P; de Greiff A; Diener HC; Keidel M
    Brain Res Cogn Brain Res; 2005 Dec; 25(3):760-76. PubMed ID: 16337110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracerebral ERD/ERS in voluntary movement and in cognitive visuomotor task.
    Rektor I; Sochůrková D; Bocková M
    Prog Brain Res; 2006; 159():311-30. PubMed ID: 17071240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PET study of the human foveal fixation system.
    Petit L; Dubois S; Tzourio N; Dejardin S; Crivello F; Michel C; Etard O; Denise P; Roucoux A; Mazoyer B
    Hum Brain Mapp; 1999; 8(1):28-43. PubMed ID: 10432180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct Frontoparietal Networks Underlying Attentional Effort and Cognitive Control.
    Berry AS; Sarter M; Lustig C
    J Cogn Neurosci; 2017 Jul; 29(7):1212-1225. PubMed ID: 28253080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.