These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Enhancing the spectral range of plant and bacterial light-harvesting pigment-protein complexes with various synthetic chromophores incorporated into lipid vesicles. Hancock AM; Swainsbury DJK; Meredith SA; Morigaki K; Hunter CN; Adams PG J Photochem Photobiol B; 2022 Dec; 237():112585. PubMed ID: 36334507 [TBL] [Abstract][Full Text] [Related]
6. Self-assembled nanoscale DNA-porphyrin complex for artificial light harvesting. Woller JG; Hannestad JK; Albinsson B J Am Chem Soc; 2013 Feb; 135(7):2759-68. PubMed ID: 23350631 [TBL] [Abstract][Full Text] [Related]
7. Efficient energy transfer from peripheral chromophores to the self-assembled zinc chlorin rod antenna: a bioinspired light-harvesting system to bridge the "green gap". Röger C; Müller MG; Lysetska M; Miloslavina Y; Holzwarth AR; Würthner F J Am Chem Soc; 2006 May; 128(20):6542-3. PubMed ID: 16704238 [TBL] [Abstract][Full Text] [Related]
8. Energy transfer dynamics and the mechanism of biohybrid photosynthetic antenna complexes chemically linked with artificial chromophores. Yoneda Y; Noji T; Mizutani N; Kato D; Kondo M; Miyasaka H; Nagasawa Y; Dewa T Phys Chem Chem Phys; 2022 Oct; 24(40):24714-24726. PubMed ID: 36128743 [TBL] [Abstract][Full Text] [Related]
9. Near-IR emissive chlorin-bacteriochlorin energy-transfer dyads with a common donor and acceptors with tunable emission wavelength. Yu Z; Ptaszek M J Org Chem; 2013 Nov; 78(21):10678-91. PubMed ID: 24079536 [TBL] [Abstract][Full Text] [Related]
10. Singlet-singlet energy transfer in self-assembled systems of the cationic poly{9,9-bis[6-N,N,N-trimethylammonium)hexyl]fluorene-co-1,4-phenylene} with oppositely charged porphyrins. Pinto SM; Burrows HD; Pereira MM; Fonseca SM; Dias FB; Mallavia R; Tapia MJ J Phys Chem B; 2009 Dec; 113(50):16093-100. PubMed ID: 19925000 [TBL] [Abstract][Full Text] [Related]
11. Dyads with tunable near-infrared donor-acceptor excited-state energy gaps: molecular design and Förster analysis for ultrafast energy transfer. Jing H; Magdaong NCM; Diers JR; Kirmaier C; Bocian DF; Holten D; Lindsey JS Phys Chem Chem Phys; 2023 Jan; 25(3):1827-1847. PubMed ID: 36601996 [TBL] [Abstract][Full Text] [Related]
12. Synthesis and excited-state photodynamics of a chlorin-bacteriochlorin dyad--through-space versus through-bond energy transfer in tetrapyrrole arrays. Muthiah C; Kee HL; Diers JR; Fan D; Ptaszek M; Bocian DF; Holten D; Lindsey JS Photochem Photobiol; 2008; 84(3):786-801. PubMed ID: 18208458 [TBL] [Abstract][Full Text] [Related]
13. Light-Harvesting Systems Based on Organic Nanocrystals To Mimic Chlorosomes. Chen PZ; Weng YX; Niu LY; Chen YZ; Wu LZ; Tung CH; Yang QZ Angew Chem Int Ed Engl; 2016 Feb; 55(8):2759-63. PubMed ID: 26799735 [TBL] [Abstract][Full Text] [Related]
14. Chlorin-bacteriochlorin energy-transfer dyads as prototypes for near-infrared molecular imaging probes: controlling charge-transfer and fluorescence properties in polar media. Kee HL; Diers JR; Ptaszek M; Muthiah C; Fan D; Lindsey JS; Bocian DF; Holten D Photochem Photobiol; 2009; 85(4):909-20. PubMed ID: 19222800 [TBL] [Abstract][Full Text] [Related]
15. Examination of chlorin-bacteriochlorin energy-transfer dyads as prototypes for near-infrared molecular imaging probes. Kee HL; Nothdurft R; Muthiah C; Diers JR; Fan D; Ptaszek M; Bocian DF; Lindsey JS; Culver JP; Holten D Photochem Photobiol; 2008; 84(5):1061-72. PubMed ID: 18673324 [TBL] [Abstract][Full Text] [Related]
16. Protein-Based Model for Energy Transfer between Photosynthetic Light-Harvesting Complexes Is Constructed Using a Direct Protein-Protein Conjugation Strategy. Bischoff AJ; Hamerlynck LM; Li AJ; Roberts TD; Ginsberg NS; Francis MB J Am Chem Soc; 2023 Jul; 145(29):15827-15837. PubMed ID: 37438911 [TBL] [Abstract][Full Text] [Related]
17. Extension of Light-Harvesting Ability of Photosynthetic Light-Harvesting Complex 2 (LH2) through Ultrafast Energy Transfer from Covalently Attached Artificial Chromophores. Yoneda Y; Noji T; Katayama T; Mizutani N; Komori D; Nango M; Miyasaka H; Itoh S; Nagasawa Y; Dewa T J Am Chem Soc; 2015 Oct; 137(40):13121-9. PubMed ID: 26403467 [TBL] [Abstract][Full Text] [Related]
18. Superior robustness of ExEm-spFRET to IIem-spFRET method in live-cell FRET measurement. Lin F; Zhang C; Du M; Wang L; Mai Z; Chen T J Microsc; 2018 Nov; 272(2):145-150. PubMed ID: 30338530 [TBL] [Abstract][Full Text] [Related]
19. Single-molecule spectroscopy selectively probes donor and acceptor chromophores in the phycobiliprotein allophycocyanin. Loos D; Cotlet M; De Schryver F; Habuchi S; Hofkens J Biophys J; 2004 Oct; 87(4):2598-608. PubMed ID: 15454454 [TBL] [Abstract][Full Text] [Related]