These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 26230645)

  • 1. Evidence for a C14 Frank-Kasper Phase in One-Size Gold Nanoparticle Superlattices.
    Hajiw S; Pansu B; Sadoc JF
    ACS Nano; 2015 Aug; 9(8):8116-21. PubMed ID: 26230645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metallurgy of soft spheres with hard core: From BCC to Frank-Kasper phases.
    Pansu B; Sadoc JF
    Eur Phys J E Soft Matter; 2017 Nov; 40(11):102. PubMed ID: 29177986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energetic and entropic contributions to self-assembly of binary nanocrystal superlattices: temperature as the structure-directing factor.
    Bodnarchuk MI; Kovalenko MV; Heiss W; Talapin DV
    J Am Chem Soc; 2010 Sep; 132(34):11967-77. PubMed ID: 20701285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural characterization of self-assembled multifunctional binary nanoparticle superlattices.
    Shevchenko EV; Talapin DV; Murray CB; O'Brien S
    J Am Chem Soc; 2006 Mar; 128(11):3620-37. PubMed ID: 16536535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Softness-driven complexity in supercrystals of gold nanoparticles.
    Pansu B; Goldmann C; Constantin D; Impéror-Clerc M; Sadoc JF
    Soft Matter; 2021 Jul; 17(26):6461-6469. PubMed ID: 34132715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sphericity and symmetry breaking in the formation of Frank-Kasper phases from one component materials.
    Lee S; Leighton C; Bates FS
    Proc Natl Acad Sci U S A; 2014 Dec; 111(50):17723-31. PubMed ID: 25378703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoparticle Superlattices as Quasi-Frank-Kasper Phases.
    Travesset A
    Phys Rev Lett; 2017 Sep; 119(11):115701. PubMed ID: 28949219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micellar Mimicry of Intermetallic C14 and C15 Laves Phases by Aqueous Lyotropic Self-Assembly.
    Baez-Cotto CM; Mahanthappa MK
    ACS Nano; 2018 Apr; 12(4):3226-3234. PubMed ID: 29611426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frank-Kasper, quasicrystalline and related phases in liquid crystals.
    Ungar G; Zeng X
    Soft Matter; 2005 Jun; 1(2):95-106. PubMed ID: 32646081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ordered structure rearrangements in heated gold nanocrystal superlattices.
    Goodfellow BW; Rasch MR; Hessel CM; Patel RN; Smilgies DM; Korgel BA
    Nano Lett; 2013; 13(11):5710-4. PubMed ID: 24131332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Symmetry breaking in particle-forming diblock polymer/homopolymer blends.
    Cheong GK; Bates FS; Dorfman KD
    Proc Natl Acad Sci U S A; 2020 Jul; 117(29):16764-16769. PubMed ID: 32636255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frank-Kasper Phases Identified in PDMS-b-PTFEA Copolymers with High Conformational Asymmetry.
    Jeon S; Jun T; Jo S; Ahn H; Lee S; Lee B; Ryu DY
    Macromol Rapid Commun; 2019 Oct; 40(19):e1900259. PubMed ID: 31584224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption and diffusion of colloidal Au nanoparticles at a liquid-vapor interface.
    Poddar NN; Amar JG
    J Chem Phys; 2014 Jun; 140(24):244702. PubMed ID: 24985663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembled soft alloy with Frank-Kasper phases beyond metals.
    Liu XY; Yan XY; Liu Y; Qu H; Wang Y; Wang J; Guo QY; Lei H; Li XH; Bian F; Cao XY; Zhang R; Wang Y; Huang M; Lin Z; Meijer EW; Aida T; Kong X; Cheng SZD
    Nat Mater; 2024 Apr; 23(4):570-576. PubMed ID: 38297141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling Nanoparticle Orientations in the Self-Assembly of Patchy Quantum Dot-Gold Heterostructural Nanocrystals.
    Zhu H; Fan Z; Yu L; Wilson MA; Nagaoka Y; Eggert D; Cao C; Liu Y; Wei Z; Wang X; He J; Zhao J; Li R; Wang Z; Grünwald M; Chen O
    J Am Chem Soc; 2019 Apr; 141(14):6013-6021. PubMed ID: 30889948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchically self-assembled hexagonal honeycomb and kagome superlattices of binary 1D colloids.
    Lim SH; Lee T; Oh Y; Narayanan T; Sung BJ; Choi SM
    Nat Commun; 2017 Aug; 8(1):360. PubMed ID: 28842555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembled simple hexagonal AB(2) binary nanocrystal superlattices: SEM, GISAXS, and defects.
    Smith DK; Goodfellow B; Smilgies DM; Korgel BA
    J Am Chem Soc; 2009 Mar; 131(9):3281-90. PubMed ID: 19216526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversible solvent vapor-mediated phase changes in nanocrystal superlattices.
    Goodfellow BW; Korgel BA
    ACS Nano; 2011 Apr; 5(4):2419-24. PubMed ID: 21517119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New types of multishell nanoclusters with a Frank-Kasper polyhedral core in intermetallics.
    Blatov VA; Ilyushin GD; Proserpio DM
    Inorg Chem; 2011 Jun; 50(12):5714-24. PubMed ID: 21608982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complex structures arising from the self-assembly of a simple organic salt.
    Montis R; Fusaro L; Falqui A; Hursthouse MB; Tumanov N; Coles SJ; Threlfall TL; Horton PN; Sougrat R; Lafontaine A; Coquerel G; Rae AD
    Nature; 2021 Feb; 590(7845):275-278. PubMed ID: 33568820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.