These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 26230645)

  • 21. Gold nanoparticle superlattice crystallization probed in situ.
    Abécassis B; Testard F; Spalla O
    Phys Rev Lett; 2008 Mar; 100(11):115504. PubMed ID: 18517795
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dendronized Poly(2-oxazoline) Displays within only Five Monomer Repeat Units Liquid Quasicrystal, A15 and σ Frank-Kasper Phases.
    Holerca MN; Sahoo D; Partridge BE; Peterca M; Zeng X; Ungar G; Percec V
    J Am Chem Soc; 2018 Dec; 140(49):16941-16947. PubMed ID: 30462922
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-pressure behavior of hydrophobically coated gold nanoparticle supercrystals: role of the structure.
    Balédent V; Goldmann C; Ibrahim H; Pansu B
    Soft Matter; 2023 May; 19(17):3113-3120. PubMed ID: 37039530
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stabilizing the Frank-Kasper Phases via Binary Blends of
    Liu M; Qiang Y; Li W; Qiu F; Shi AC
    ACS Macro Lett; 2016 Oct; 5(10):1167-1171. PubMed ID: 35658178
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Substitutional doping in nanocrystal superlattices.
    Cargnello M; Johnston-Peck AC; Diroll BT; Wong E; Datta B; Damodhar D; Doan-Nguyen VV; Herzing AA; Kagan CR; Murray CB
    Nature; 2015 Aug; 524(7566):450-3. PubMed ID: 26310766
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fabrication of three-dimensionally interconnected nanoparticle superlattices and their lithium-ion storage properties.
    Jiao Y; Han D; Ding Y; Zhang X; Guo G; Hu J; Yang D; Dong A
    Nat Commun; 2015 Mar; 6():6420. PubMed ID: 25739732
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Solvent-driven interactions between hydrophobically-coated nanoparticles.
    Hajiw S; Schmitt J; Impéror-Clerc M; Pansu B
    Soft Matter; 2015 May; 11(19):3920-6. PubMed ID: 25869651
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of a Frank-Kasper Z phase from shape amphiphile self-assembly.
    Su Z; Hsu CH; Gong Z; Feng X; Huang J; Zhang R; Wang Y; Mao J; Wesdemiotis C; Li T; Seifert S; Zhang W; Aida T; Huang M; Cheng SZD
    Nat Chem; 2019 Oct; 11(10):899-905. PubMed ID: 31548666
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Self-Assembly and Thermal Stability of Binary Superlattices of Gold and Silicon Nanocrystals.
    Yu Y; Bosoy CA; Smilgies DM; Korgel BA
    J Phys Chem Lett; 2013 Oct; 4(21):. PubMed ID: 24327828
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Superlattice Engineering with Chemically Precise Molecular Building Blocks.
    Yan XY; Guo QY; Liu XY; Wang Y; Wang J; Su Z; Huang J; Bian F; Lin H; Huang M; Lin Z; Liu T; Liu Y; Cheng SZD
    J Am Chem Soc; 2021 Dec; 143(51):21613-21621. PubMed ID: 34913335
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Size-dependent multiple twinning in nanocrystal superlattices.
    Rupich SM; Shevchenko EV; Bodnarchuk MI; Lee B; Talapin DV
    J Am Chem Soc; 2010 Jan; 132(1):289-96. PubMed ID: 19968283
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DNA based strategy to nanoparticle superlattices.
    Mazid RR; Si KJ; Cheng W
    Methods; 2014 May; 67(2):215-26. PubMed ID: 24508551
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanoscale Faceting and Ligand Shell Structure Dominate the Self-Assembly of Nonpolar Nanoparticles into Superlattices.
    Bo A; Liu Y; Kuttich B; Kraus T; Widmer-Cooper A; de Jonge N
    Adv Mater; 2022 May; 34(20):e2109093. PubMed ID: 35266222
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular insights into the thermal stability of gold superlattices.
    Liu X; Lu P; Zhai H; Xie F
    Nanotechnology; 2019 Nov; 31(8):085704. PubMed ID: 31689690
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials.
    Boles MA; Engel M; Talapin DV
    Chem Rev; 2016 Sep; 116(18):11220-89. PubMed ID: 27552640
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural characterization and self-assembly into superlattices of iron oxide-gold core-shell nanoparticles synthesized via a high-temperature organometallic route.
    Chiang IC; Chen DH
    Nanotechnology; 2009 Jan; 20(1):015602. PubMed ID: 19417256
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dipole-dipole interactions in nanoparticle superlattices.
    Talapin DV; Shevchenko EV; Murray CB; Titov AV; Kral P
    Nano Lett; 2007 May; 7(5):1213-9. PubMed ID: 17397231
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Solvothermal synthesis and controlled self-assembly of monodisperse titanium-based perovskite colloidal nanocrystals.
    Caruntu D; Rostamzadeh T; Costanzo T; Parizi SS; Caruntu G
    Nanoscale; 2015 Aug; 7(30):12955-69. PubMed ID: 26168304
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interparticle spacing control in the superlattices of carboxylic acid-capped gold nanoparticles by hydrogen-bonding mediation.
    Yao H; Kojima H; Sato S; Kimura K
    Langmuir; 2004 Nov; 20(23):10317-23. PubMed ID: 15518531
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Two-Dimensional Frank-Kasper
    Xie H; Bai J; Ren H; Li S; Pan H; Ren Y; Qin G
    Nano Lett; 2021 Sep; 21(17):7198-7205. PubMed ID: 34406019
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.