These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 26230804)

  • 1. Giant Osmotic Pressure in the Forced Wetting of Hydrophobic Nanopores.
    Michelin-Jamois M; Picard C; Vigier G; Charlaix E
    Phys Rev Lett; 2015 Jul; 115(3):036101. PubMed ID: 26230804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water confinement in hydrophobic nanopores. Pressure-induced wetting and drying.
    Smirnov S; Vlassiouk I; Takmakov P; Rios F
    ACS Nano; 2010 Sep; 4(9):5069-75. PubMed ID: 20690599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subnanometer Topological Tuning of the Liquid Intrusion/Extrusion Characteristics of Hydrophobic Micropores.
    Bushuev YG; Grosu Y; Chora Żewski MA; Meloni S
    Nano Lett; 2022 Mar; 22(6):2164-2169. PubMed ID: 35258978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energetic Performance of Pure Silica Zeolites under High-Pressure Intrusion of LiCl Aqueous Solutions: An Overview.
    Confalonieri G; Daou TJ; Nouali H; Arletti R; Ryzhikov A
    Molecules; 2020 May; 25(9):. PubMed ID: 32375316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aqueous electrolytes confined within functionalized silica nanopores.
    Videla PE; Sala J; Martí J; Guàrdia E; Laria D
    J Chem Phys; 2011 Sep; 135(10):104503. PubMed ID: 21932906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal effects of water intrusion in hydrophobic nanoporous materials.
    Karbowiak T; Paulin C; Ballandras A; Weber G; Bellat JP
    J Am Chem Soc; 2009 Jul; 131(29):9898-9. PubMed ID: 19621951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rectified and Salt Concentration Dependent Wetting of Hydrophobic Nanopores.
    Polster JW; Aydin F; de Souza JP; Bazant MZ; Pham TA; Siwy ZS
    J Am Chem Soc; 2022 Jul; 144(26):11693-11705. PubMed ID: 35729706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Presence of electrolyte promotes wetting and hydrophobic gating in nanopores with residual surface charges.
    Innes L; Gutierrez D; Mann W; Buchsbaum SF; Siwy ZS
    Analyst; 2015 Jul; 140(14):4804-12. PubMed ID: 25669872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High permeability and salt rejection reverse osmosis by a zeolite nano-membrane.
    Liu Y; Chen X
    Phys Chem Chem Phys; 2013 May; 15(18):6817-24. PubMed ID: 23546302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion exclusion and electrokinetic effects resulting from electro-osmotic flow of salt solutions in charged silica nanopores.
    Haria NR; Lorenz CD
    Phys Chem Chem Phys; 2012 May; 14(17):5935-44. PubMed ID: 22441317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydraulic transport across hydrophilic and hydrophobic nanopores: Flow experiments with water and n-hexane.
    Gruener S; Wallacher D; Greulich S; Busch M; Huber P
    Phys Rev E; 2016 Jan; 93(1):013102. PubMed ID: 26871150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Forced intrusion of water and aqueous solutions in microporous materials: from fundamental thermodynamics to energy storage devices.
    Fraux G; Coudert FX; Boutin A; Fuchs AH
    Chem Soc Rev; 2017 Dec; 46(23):7421-7437. PubMed ID: 29051934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of the Topology on Wetting and Drying of Hydrophobic Porous Materials.
    Bushuev YG; Grosu Y; Chorążewski MA; Meloni S
    ACS Appl Mater Interfaces; 2022 Jul; 14(26):30067-30079. PubMed ID: 35730678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electric-field-induced wetting and dewetting in single hydrophobic nanopores.
    Powell MR; Cleary L; Davenport M; Shea KJ; Siwy ZS
    Nat Nanotechnol; 2011 Oct; 6(12):798-802. PubMed ID: 22036811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osmotic Pressure and Diffusion of Ions in Charged Nanopores.
    Apel P; Bondarenko M; Yamauchi Y; Yaroshchuk A
    Langmuir; 2021 Dec; 37(48):14089-14095. PubMed ID: 34821504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrusion and extrusion of water in hydrophobic nanopores.
    Tinti A; Giacomello A; Grosu Y; Casciola CM
    Proc Natl Acad Sci U S A; 2017 Nov; 114(48):E10266-E10273. PubMed ID: 29138311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of heterogeneous wetting in periodic hybrid nanopores.
    Picard C; Gérard V; Michel L; Cattoën X; Charlaix E
    J Chem Phys; 2021 Apr; 154(16):164710. PubMed ID: 33940834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new working mode for molecular springs: water intrusion induced by cooling and associated isobaric heat capacity change of a {ZIF-8 + water} system.
    Grosu Y; Eroshenko V; Nedelec JM; Grolier JP
    Phys Chem Chem Phys; 2015 Jan; 17(3):1572-4. PubMed ID: 25473935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomimetic solution against dewetting in a highly hydrophobic nanopore.
    Picaud F; Paris G; Gharbi T; Balme S; Lepoitevin M; Tangaraj V; Bechelany M; Janot JM; Balanzat E; Henn F
    Soft Matter; 2016 Jun; 12(22):4903-11. PubMed ID: 27157717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced transport into and out of dead-end pores.
    Kar A; Chiang TY; Ortiz Rivera I; Sen A; Velegol D
    ACS Nano; 2015 Jan; 9(1):746-53. PubMed ID: 25559608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.